Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival
|
By LabMedica International staff writers Posted on 06 Nov 2024 |
.jpg)
A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their surfaces, creating physical 'synapses' between cells. This movement of resources from within the cell to its surface is essential for coordinating immune responses against pathogens and cancers. To explore the interactions of immune cells within the tumor microenvironment—the area surrounding a tumor—researchers typically isolate these immune cells to analyze the genes active in each cell type. Alternatively, they may apply fluorescent tags to specific proteins and use microscopy to visualize the abundance of those proteins based on fluorescence intensity. However, neither method reveals whether the proteins are located on the cell surface at a synapse, contributing to cell-to-cell interactions. A new combination of imaging and computational techniques has now been developed to study the connections between immune cells in breast cancer and melanoma.
Researchers at The Jackson Laboratory (JAX, Bar Harbor, ME, USA) began by utilizing existing microscopy data to examine how signaling molecules cluster at immune synapses, providing a more comprehensive understanding of immune cell interactions. They went on to integrate advanced imaging methods with a novel computational technique to investigate immune cell interactions in unprecedented detail, discovering that these interactions in the context of breast cancer or melanoma can help predict immune responses and patient outcomes. Notably, the research indicated that increased interactions between two specific types of immune cells correlated with longer survival in breast cancer patients.
The technique, known as Computational Immune Synapse Analysis (CISA), allows the research team to detect not only which cells within a tissue contact each other physically but also whether key molecules are concentrated at those contact points. The method analyzes immune cell images, emphasizing cell edges and potential immune synapses, and compares these to the localization of tagged molecules. By focusing on T cells, the researchers demonstrated that CISA could identify interactions between T cells and other immune cells within tumor microenvironments in human melanoma samples. Additional experiments indicated that synapses formed between T cells and macrophages—cells that engulf pathogens and tumor cells—were associated with increased T cell proliferation.
The researchers then assessed whether immune cell interactions in breast cancer samples influenced the progression of the cancer. Their findings, published in the advanced online issue of Communications Biology, revealed that stronger connections between T cells and B cells—another immune cell type—were linked to improved survival rates for patients. This insight could eventually facilitate new methods for predicting patient outcomes, selecting candidates for immune therapies, or even developing novel immunotherapies. Identifying significant patterns in cell interactions is the ultimate aim of CISA. The researchers have made this image analysis platform accessible online for other scientists and believe it could be utilized to analyze interactions between various cell types. Additionally, it is capable of processing different types of images; melanoma samples were examined using histocytometry, while breast cancer samples were analyzed using imaging mass cytometry (IMC). The team plans to extend their method to other tumor types and immune cell types to deepen their understanding of the tumor microenvironment and its effects on cancer.
“Researchers have long suspected that better characterizing this complex community, which includes immune cells, blood vessels, and signaling molecules, could shed light on how cancers grow, spread, and respond to treatment,” said Jeffrey Chuang, a professor at JAX and senior author of the new study. “This new analysis lets us quantify the locations and interactions of cells and molecules in a way that has never before been possible using imaging.”
Latest Immunology News
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
- Companion Diagnostic Test for CRC Patients Identifies Eligible Treatment Population
- Novel Tool Uses Deep Learning for Precision Cancer Therapy
- Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
- Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
- Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
- Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
About 400 children in the UK are diagnosed with acute lymphoblastic leukemia (ALL) each year, with roughly 15% presenting with a more aggressive T-ALL subtype. While the standard approach is a four-week... Read more
Four-Gene Blood Test Rules Out Bacterial Lung Infection
Lower respiratory tract infections (LRTIs) are among the most common reasons for antibiotic prescriptions, yet distinguishing bacterial infections from viral ones remains notoriously difficult.... Read more
New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
Bacterial vaginosis (BV) impacts approximately 25% of women of reproductive age, while up to 75% of women experience candida vaginitis (CV) at least once in their lifetime. Vaginal symptoms are one of... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreMicrobiology
view channelRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channelAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more




 assay.jpg)



