Nanotech to Further Enhance Sensitivity and Accuracy of ELISA Testing for Cancer Screening
|
By LabMedica International staff writers Posted on 01 Jul 2024 |

The early detection of serious diseases such as cancer or dementia is crucial for effective treatment and improving survival rates. One of the leading methods used for this purpose is the enzyme-linked immunosorbent assay (ELISA), a popular technology in disease screenings. Building upon previous advancements in nanoparticle research, scientists are now working on further enhancing the sensitivity and accuracy of ELISA tests for detecting cancers and other diseases.
The promising nanoparticle research being conducted by Associate Professor Xiaohu Xia at the University of Central Florida’s (UCF, Orlando, FL, USA) Department of Chemistry has the potential to increase the accuracy of disease detection by over 300 times compared to current market standards. Supported by a USD 1.3 million grant from the National Institutes of Health, Xia's four-year project aims to boost the diagnostic performance of ELISA tests by utilizing custom-designed nickel-platinum nanoparticles that attach to specific disease markers like proteins and hormones in fluid samples. Although nanoparticles have been previously explored in ELISA tests, significant enhancements in diagnostic sensitivity have not been achieved for many years. Xia's work seeks to end this stagnation by replacing traditional peroxidase enzymes from horseradish with nanoparticle-based artificial enzyme "mimics," which offer greater stability and activity, potentially leading to more dependable and accurate ELISA test results.
In his ongoing study, Xia plans to optimize and demonstrate the effectiveness of these nanoparticles with clinical samples, marking the first such attempt in his research. He is refining the nanoparticles' structure to create the most effective artificial enzymes for diagnostic use. These nanoparticles will act as advanced artificial "mimics" of conventional enzymes, reacting in such a way that they produce a color change with bioreceptors like antibodies when disease markers are detected. The intensity of the color change indicates the level of the biomarker present, with stronger colors indicating higher concentrations. The high sensitivity of the tests is critical to avoid false negatives, which could hamper timely treatment. Xia is optimistic that his research will not only provide faster results and clearer sample coloration but also simplify the testing processes and equipment required. By extending the insights from his foundational research in 2021, he aims to impact the broader field of in vitro diagnostics, proposing a new class of highly efficient artificial enzymes suitable for a wide range of diagnostic applications beyond just ELISA.
“Detection sensitivity is critical for diagnostics for significant diseases,” said Xia. “For the very early stages, the concentration of biomarkers may be very low and not detected by conventional ELISA. With our new technology, were aiming to substantially improve the sensitivity so we can detect even low concentrations of biomarkers in patient samples.”
“The ultimate goal we want to achieve is early detection of significant diseases like cancer and in the future, we also want to detect some other very challenging diseases like maybe even Alzheimer’s Disease,” Xia added.
Related Links:
UCF Department of Chemistry
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







