We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Research Platform Assesses Brain Cancer Mutations during Surgery

By LabMedica International staff writers
Posted on 04 Jun 2024
Print article
Image: Brain cancer mutations identified during surgery (Photo courtesy of Mayo Clinic)
Image: Brain cancer mutations identified during surgery (Photo courtesy of Mayo Clinic)

Brain cancer, particularly a type known as glioma, is notoriously difficult to treat and generally has a poor five-year survival rate. Given the aggressive nature of malignant tumors, rapid decision-making during surgery is crucial. A newly developed surgical platform now enables critical decisions about tumor treatment to be made within minutes during operations.

Researchers at the Mayo Clinic (Rochester, MN, USA) employed mass spectrometry to detect key gene mutations, specifically isocitrate dehydrogenase (IDH) mutations, in brain cancer in real-time. Mass spectrometry, a sensitive technique for analyzing substances in tissue samples, including those altered in cancer, was pivotal in this study. Over 240 small tissue biopsies were collected from patients undergoing both asleep and awake brain surgeries for suspected glioma at Mayo Clinic between 2021 and 2023, with an additional 137 biopsies provided by an international collaborator. Neurosurgeons focused on the core of the tumor to identify the IDH mutation and also examined the surrounding tissues to determine if the cancer had spread.

During surgery, the tissue samples were placed on a glass slide, and the mass spectrometer enabled researchers to identify the presence of the IDH mutation within just two minutes, achieving 100% accuracy. This capability not only enhances the accuracy of real-time diagnoses but also allows surgeons to assess the patient’s prognosis more effectively and carry out tumor resections to improve outcomes. Going forward, this innovative platform could enable surgeons to utilize the critical window of opportunity in the operating room to customize treatments based on the molecular characteristics of the tumor, fostering a more personalized approach to medicine. The researchers are continuing their studies to identify additional molecular markers in tumors where the IDH mutation is absent and plan to extend their findings to other types of brain cancers.

“The ability to identify this mutation during brain surgery means that one day in the future we may be able to treat patients with this specific mutation locally before they leave the operating room,” said Alfredo Quiñones-Hinojosa, the study’s senior author. “Therefore, we will be able to bring the fight against cancer to the operating room, before chemotherapy and radiation treatments begin, and before the disease has progressed and invaded further.” The study was published in the journal PNAS on May 28, 2024.

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more