We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

By LabMedica International staff writers
Posted on 21 May 2024
Print article
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes to disease is quite different from knowing how to treat the disease. Each risk gene can affect multiple cell types, and pinpointing how these cell types—and even individual cells—influence a gene and its role in disease progression is crucial for developing effective treatments. Now, a new CRISPR screen method allows for the rapid analysis of brain cell types associated with key developmental genes, providing insights into the genetic and cellular mechanisms underlying various neurological disorders at an unprecedented level.

Developed at Scripps Research (La Jolla, CA, USA), the new technique, called in vivo Perturb-seq, utilizes CRISPR-Cas9 technology combined with single-cell transcriptomic analysis as a readout to measure the effects of genomic alterations on individual cells. By employing CRISPR-Cas9, researchers can introduce specific changes into the genome during brain development and then analyze how these alterations impact individual cells, assessing thousands simultaneously. Previously, methods for inserting genetic perturbations into brain tissue were slow, often requiring days or weeks, which hampered the study of gene functions in neurodevelopment. However, this new screening method enables the rapid expression of perturbation agents in living cells within 48 hours, allowing researchers to quickly observe the roles of specific genes across different cell types within a very short time frame.

This method also offers unprecedented scalability—researchers were able to profile over 30,000 cells in a single experiment, a rate 10-20 times faster than traditional methods. In regions such as the cerebellum, they gathered tens of thousands of cells, reaching areas that previous labeling techniques could not. A pilot study using this innovative technology revealed that genetic perturbations produce varied effects across different cell types. This finding is significant as these affected cell types are often the targets for specific diseases or genetic variants. With this new technology, the team is poised to deepen their understanding of neuropsychiatric disorders and the relationship between specific cell types and brain regions. Going forward, they are keen on applying this technology to other cell types and organs to explore a broad spectrum of diseases in terms of tissue development and aging.

“We know that certain genetic variants in our genome can make us vulnerable or resilient towards different diseases, but which specific cell types are behind a disease? Which brain regions are susceptible to the genome mutations in those cells? These are the kinds of questions we're trying to answer,” said senior author Xin Jin, PhD, an assistant professor in the Department of Neuroscience at Scripps Research. “With this new technology, we want to build a more dynamic picture across brain region, across cell type, across the timing of disease development, and really start understanding how the disease happened—and how to design interventions.”

Related Links:
Scripps Research

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Unstirred Waterbath
HumAqua 5
New
Fixed Speed Tube Rocker
GTR-FS

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more