LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Unique AI-Based Approach Automates Clinical Analysis of Blood Data

By LabMedica International staff writers
Posted on 19 Jul 2023
Image: AI-assisted analysis of single-cell blood data brings precision diagnostics to immune medicine (Photo courtesy of Freepik)
Image: AI-assisted analysis of single-cell blood data brings precision diagnostics to immune medicine (Photo courtesy of Freepik)

The clinical analysis of blood data, known as cytometry, is a labor-intensive process that is largely subjective, even for the most skilled laboratory staff. Current cytometry-based diagnostics for blood cancer and other immune diseases require doctors and analysts to evaluate complex, high-dimensional data sets. This analysis, which averages around 20 minutes per sample, is not only time-consuming but also faces a significant shortage of trained personnel. Moreover, the process is quite subjective, with approximately 30% variability in analysis between different operators. These challenges have limited the use of cytometry data for more personalized treatment. Now, a cloud-based machine learning platform can help labs manage their caseloads, provide an objective second opinion to every patient, and offer new insights to physicians for tailoring treatments to every patient's unique immune system.

hema.to (Munich, Germany) offers user-friendly software for clinical decision support in blood cancer cases using cytometry data. This artificial intelligence (AI)-powered tool, which is FDA registered and has CE-IVD approval, streamlines the diagnostic workflow, benefiting both diagnosticians and patients. Already implemented in leading hematology labs, the AI software is now being scaled up to support blood cancer diagnostics in laboratories across Europe and demonstrate significant improvements in diagnostic quality.

hema.to's proprietary algorithms, developed using its extensive and continuously growing database of diverse cytometry data sources, can predict disease biomarkers directly from the raw data generated by blood measurement devices. This addresses a hitherto unresolved issue caused by the lack of standardized measurement protocols, resulting in complex data variability that previously hampered automation. The company specializes in integrating data from various sources to identify predictive disease biomarkers. This technology has already been incorporated into the regular clinical workflow of two German labs for decision support. hema.to now plans to broaden its user base, expand the range of supported diseases, and enhance the quality of its AI models.

“Europe’s largest leukemia lab had the real need to speed-up their internal analysis workflows and worked with us to build a world-first AI prototype,” said Karsten Miermans, co-founder and CEO of hema.to. After the success of demonstration of AI-assisted clinical cytometry, we noticed that all labs have the same manual workflows and pain points. We founded hema.to two years ago to help labs across the world with their clinical cytometry workflows.”

Related Links:
hema.to 

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more