We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Algorithm Predicts Diabetic Kidney Disease through Blood Tests

By LabMedica International staff writers
Posted on 01 Jun 2023
Print article
Image: New algorithm can predict diabetic kidney disease (Photo courtesy of Freepix)
Image: New algorithm can predict diabetic kidney disease (Photo courtesy of Freepix)

Diabetes is globally recognized as the main contributor to kidney failure. Notable advancements have been made in devising treatments for kidney disease in diabetic patients. Yet, evaluating an individual's risk for kidney disease based solely on clinical factors can be challenging. Consequently, identifying who is most susceptible to developing diabetic kidney disease is a vital clinical need. Now, scientists have created a computational method that predicts the likelihood of a person with type 2 diabetes developing kidney disease, a common yet severe diabetes complication. This could aid physicians in preventing or improving the management of kidney disease in type 2 diabetes patients.

The new algorithm developed by researchers from Sanford Burnham Prebys (La Jolla, CA, USA) and the Chinese University of Hong Kong (CUHK, Hong Kong) relies on measuring a process known as DNA methylation, which is the accumulation of subtle changes in the DNA. DNA methylation can provide essential insights into gene activation and deactivation and can be easily measured via blood tests.

Utilizing comprehensive data from over 1,200 type 2 diabetes patients registered in the Hong Kong Diabetes Register, the researchers constructed their model which they also tested on an independent group of 326 Native Americans with type 2 diabetes. This confirmed the model's predictive power for kidney disease across diverse populations. The researchers are presently fine-tuning their model and extending its application to address other health and disease-related inquiries, such as why some cancer patients do not respond favorably to certain treatments.

“This study provides a glimpse into the powerful future of predictive diagnostics,” said co-senior author Kevin Yip, Ph.D., a professor and director of Bioinformatics at Sanford Burnham Prebys. “Our team has demonstrated that by combining clinical data with cutting-edge technology, it’s possible to develop computational models to help clinicians optimize the treatment of type 2 diabetes to prevent kidney disease.”

“Our computational model can use methylation markers from a blood sample to predict both current kidney function and how the kidneys will function years in the future, which means it could be easily implemented alongside current methods for evaluating a patient’s risk for kidney disease,” added Yip.

Related Links:
Sanford Burnham Prebys
CUHK 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more