New Tool Assesses Cost of ctDNA Testing
By LabMedica International staff writers Posted on 22 Nov 2022 |

Circulating tumor DNA (ctDNA) is a promising new biomarker with multiple potential applications in cancer care. Estimating total cost of ctDNA testing is necessary for reimbursement and implementation, but challenging because of variations in workflow.
Recent proof-of-concept studies have demonstrated the diagnostic potential of the analysis of circulating tumor-derived DNA fragments as a tumor biomarker supporting clinical decision making. These ctDNA fragments can be analyzed using liquid biopsy approaches in blood plasma and urine among others.
Medical Scientists from the Amsterdam University Medical Centers (Amsterdam, The Netherlands) developed a framework that provides a consistent total cost calculation for ctDNA testing across different diagnostic workflows and platforms, including aspects such as personnel, materials, overhead, and failures, while taking test volume into account. The framework's developers also provide an open-access tool to allow for laboratory-specific calculations to explore the total costs of ctDNA testing-specific workflow parameters.
The diagnostic workflow for ctDNA testing was mapped in interactive discussions with experts, including specialists in laboratory medicine, clinical molecular biologists, pathologists, clinical scientists in molecular pathology, laboratory technicians, and ctDNA specialists, starting from blood sample collection to diagnostic test result. A micro-costing approach was used for cost calculation to ensure that the actual resources utilized and the unit costs of those resources are included in the cost calculations. The approach in the cost calculation tool was based on the activity-based costing method. According to the activity-based costing method, cost objects consume activities, and activities consume costs.
The team reported the total costs per sample decrease as the testing volume increases. Therefore, the total costs per sample are reported for a testing volume of one up to the maximum testing volume of the platforms. The maximum testing volume varies between case studies. For the case study Digital Droplet PCR, the costs ranged from USD 199 to USD 1,420, with a maximum testing volume (i.e., 200 samples per week for this case study) to one sample per week. For the case study Real-Time PCR 1, the total per sample costs ranged from USD 761 to USD 1,873 (for 150 samples to one sample per week). For the case study Real-Time PCR 2, the costs ranged from USD 564 to USD 1,148 (for 20 samples to one sample per week). For the case study Mass Spectrometry, the costs ranged from USD 481 to USD 2,630 (for 28 samples to one sample per week). For the case study Commercial NGS Panel, the costs ranged from USD 1,683 to USD 8,399) (for 32 samples to one sample per week). For the case study Custom NGS Panel, the costs ranged from USD 592 to USD 9,124) (for 96 samples to one sample per week).
The authors concluded that they have developed an adaptable micro-costing framework and accompanying open access tool that allows users to explore the total costs of ctDNA analysis per sample, from sample collection to the diagnostic test result, of different diagnostic workflows. The study was published on Nov 16, 2022 in the Journal of Molecular Diagnostics.
Related Links:
Amsterdam University Medical Centers
Latest Molecular Diagnostics News
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more