We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Chromosome Instability Patterns Predict Tumor Drug Response

By LabMedica International staff writers
Posted on 16 Jun 2022
Print article
Image: Computer-generated three dimensional drawing of a chromosome mutation (Photo courtesy of 123rf.com)
Image: Computer-generated three dimensional drawing of a chromosome mutation (Photo courtesy of 123rf.com)

By analyzing the differences in the number of repetitions of sequences of DNA within cancerous tumors, genomic researchers characterized 17 different types of chromosomal instability, which could be used to predict tumor drug response and to aid in the identifying future drug targets.

Chromosomal instability (CIN) is a type of genomic instability in which chromosomes are unstable, such that either whole chromosomes or parts of chromosomes are duplicated or deleted. Chromosomal instability is a common feature of cancer, occurring in around 80% of tumors, researchers are only now beginning to understand exactly what types or patterns of instability are present in any given tumor.

To increase this understanding, investigators at the University of Cambridge (United Kingdom) and colleagues at the Spanish National Cancer Research Center (Madrid, Spain) evaluated the extent, diversity, and origin of CIN across 7,880 tumors representing 33 cancer types.

Results of this evaluation revealed 17 different types of chromosomal instability. These chromosomal instability signatures could be used to predict how tumors might respond to drugs, as well as aiding in the identification of future drug targets.

Senior author Dr. Florian Markowetz, senior group leader at the Cancer Research UK Cambridge Institute of the University of Cambridge, said, "The more complex the genetic changes that underlie a cancer, the more difficult they are to interpret and the more challenging it is to treat the tumor. This is tragically clear from the very low survival rates for cancers that arise as a result of chromosomal instability. Our discovery offers hope that we can turn things around, providing much more sophisticated and accurate treatments. We are now working hard to bring our technology to patients and develop it to a level where it can transform patients' lives."

The CIN study was published in the June 15, 2022, online edition of the journal Nature.

Related Links:
University of Cambridge 
Spanish National Cancer Research Center 

 

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.