We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Histological Criteria Predicts Lymphoma Transformation in Bone Marrow Biopsies

By LabMedica International staff writers
Posted on 16 Feb 2022
Print article
Image: Highly atypical cells in marrow examined for large cell transformation. Bone marrow core biopsies demonstrating (A) highly atypical cells including cells with prominent spindling of the nucleus and (B) cells with marked pleomorphism and/or multinucleation (Photo courtesy of Yale Medicine)
Image: Highly atypical cells in marrow examined for large cell transformation. Bone marrow core biopsies demonstrating (A) highly atypical cells including cells with prominent spindling of the nucleus and (B) cells with marked pleomorphism and/or multinucleation (Photo courtesy of Yale Medicine)

Large cell transformation (LCT) of indolent B-cell lymphomas, such as follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), signals a worse prognosis, at which point aggressive chemotherapy is initiated.

Although LCT is relatively straightforward to diagnose in lymph nodes, a marrow biopsy is often obtained first given its ease of procedure, low cost, and low morbidity. Criteria for morphologic evaluation of lymphoma transformation are not established in bone marrow biopsies.

Pathologists at the Yale Medicine (New Haven, CT, USA) and their colleagues studied the accuracy and reproducibility of a trained convolutional neural network in identifying LCT, in light of promising machine learning tools that may introduce greater objectivity to morphologic analysis. They retrospectively identified patients who had a diagnosis of FL or CLL who had undergone bone marrow biopsy for the clinical question of LCT.

They scored morphologic criteria and correlated results with clinical disease progression. In addition, whole slide scans were annotated into patches to train convolutional neural networks to discriminate between small and large tumor cells and to predict the patient's probability of transformation. All FL and CLL cases were scanned at ×40 magnification using a high-resolution Aperio scanner the Aperio ScanScope CS, (Aperio Technologies, Vista, CA, USA) and annotated with the digital pathology analysis software QuPath to define areas of maturing trilineage hematopoiesis, small cell lymphoma, and large cell lymphoma.

The investigators reported that using morphologic examination, the proportion of large lymphoma cells (≥10% in FL and ≥30% in CLL), chromatin pattern, distinct nucleoli, and proliferation index were significantly correlated with LCT in FL and CLL. Compared to pathologist-derived estimates, machine-generated quantification demonstrated better reproducibility and stronger correlation with final outcome data. Of the four models considered, the end-to-end convolutional neural network (CNN)-based model obtained the best results, with an AUROC of 0.857. This was followed by the logistic regression model trained on surface area estimates extracted from QuPath annotations (AUROC, 0.851).

The authors concluded that their histologic findings may serve as indications of LCT in bone marrow biopsies. The pathologist-augmented with machine system appeared to be the most predictive, arguing for greater efforts to validate and implement these tools to further enhance physician practice. The study was published in the February 2022 issue of the journal Archives of Pathology and Laboratory Medicine.

Related Links:
Yale Medicine 
Aperio Technologies 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Sekisui Diagnostics UK Ltd.