We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sensitive PCR Test Predicts Treatment Response in Metastatic Head and Neck Cancers

By LabMedica International staff writers
Posted on 06 Jul 2021
Print article
Image: Micrograph image of human papilloma virus associated oropharyngeal cancer (HPV+ OPSCC). The tissue was stained to show the presence of the virus by in situ hybridization (Photo courtesy of Wikimedia Commons)
Image: Micrograph image of human papilloma virus associated oropharyngeal cancer (HPV+ OPSCC). The tissue was stained to show the presence of the virus by in situ hybridization (Photo courtesy of Wikimedia Commons)
A recently developed droplet digital PCR (ddPCR)-based assay for circulating tumor DNA (ctDNA) from human papillomavirus HPV16 (which is responsible for almost 90% of HPV-positive oropharyngeal cancers) predicts treatment response in metastatic human papillomavirus related (HPV+) oropharyngeal squamous cell carcinoma (OPSCC).

Head and neck squamous cell carcinomas (HNSCC) constitute 3–5% of all malignancies worldwide and there are approximately 600,000 newly diagnosed cases annually. The majority of patients with HNSCC present with locally and/or regionally advanced disease at diagnosis. Despite the rising incidence of HPV + OPSCC, treatment of metastatic disease remains palliative rather than curative. Even with new treatments such as immunotherapy, response rates are low and can be delayed, while even mild tumor progression in the face of an ineffective therapy can lead to rapid death. Real-time biomarkers of response to therapy could improve outcomes by guiding early change of therapy in the metastatic setting.

Investigators at the University of Michigan (Ann Arbor, USA) turned to a sensitive liquid biopsy-based PCR test for such biomarkers. The classical PCR test carries out one reaction per single sample. The digital PCR (dPCR) method also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The dPCR method has been demonstrated as useful for studying variations in gene sequences - such as copy number variants and point mutations - and it is routinely used for clonal amplification of samples for next-generation sequencing.

Droplet digital PCR (ddPCR) is a variation of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.

In initiating the current study, the investigators hypothesized that: 1) a HPV16 ctDNA test would offer a precise assay for detection of HPV+ OPSCC and 2) the assay would predict progressive disease prior to radiographic imaging in patients undergoing treatment for recurrent or metastatic HPV+ OPSCC. Thus, they developed and analytically validated a highly sensitive and specific ddPCR assay for absolute quantification of HPV ctDNA from plasma specimens and performed an evaluation of clinical utility in a prospective, longitudinal patient cohort.

For this study the investigators analyzed more than 100 samples taken over nearly two years from 16 patients with advanced cancers that were positive for HPV16. Seven of the patients were treated with immunotherapy regimens. Eleven patients underwent treatment that included chemotherapy. Results revealed that increasing levels of HPV-positive circulating tumor DNA after a course of treatment were a strong indicator that the cancer was not responding to the treatment. Furthermore, it was found that the tumor DNA could be detected months earlier than tumor growth that could be measured on imaging scans.

"Currently, the only way doctors know if a treatment is working is for the patient to get an imaging scan every few months to see whether their tumors are shrinking," said contributing author Dr. Paul Swiecicki, assistant professor of medical oncology at the University of Michigan. "And this is not fully accurate since some cancers show what we call pseudoprogression, where a successful treatment actually makes the tumors bigger before it shrinks them. Our goal was to develop a test that could tell us whether a treatment is likely to work after a single cycle."

The study was published in the June 22, 2021, online edition of the journal Oncotarget.

Related Links:
University of Michigan

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.