We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Leukocyte Epigenomics and Artificial Intelligence Predict Late-Onset Alzheimer’s Disease

By LabMedica International staff writers
Posted on 12 Apr 2021
Print article
Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)
Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)
Alzheimer’s Disease (AD) is the most common form of age-related dementia, accounting for 60%–80% of such cases. The disorder causes a wide range of significant mental and physical disabilities, with profound behavioral changes and progressive impairment of social skills.

AD is a complex disorder influenced by environmental and genetic factors. Genome-wide association studies (GWAS) have identified several late-onset AD (LOAD)-associated risk loci proliferation in peripheral blood leukocytes including in T-lymphocytes, B-lymphocytes, polymorphonuclear leucocytes, monocytes, and macrophages have been reported.

A team of Medical Scientists mainly from the Oakland University-William Beaumont School of Medicine (Royal Oak, MI, USA) evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer’s Disease (AD) detection and elucidated its molecular pathogeneses. The team studied blood samples from two dozen Alzheimer's disease patients and the same number of cognitively health controls.

Approximately 500 ng of genomic DNA was extracted from each of the 48 samples, which subsequently were bisulfite converted using the EZ DNA Methylation-Direct Kit (Zymo Research, Orange, CA, USA). They performed genome-wide DNA methylation analysis of the blood samples using Infinium MethylationEPIC BeadChip array (Illumina, San Diego, CA, USA). Artificial Intelligence (AI) analysis was performed using a combination of CpG sites from different genes. They also used six artificial intelligences approaches to analyze their dataset, including support vector machine, random forest, and deep learning. Deep learning is a branch of machine learning that aims to mimic the neural networks of animal brains.

The team reported that each of the AI approaches could predict Alzheimer's disease with high accuracy, yielding areas under the curve (AUC) of at least 0.93. Deep learning further improved upon that with an AUC of 0.99 and a sensitivity and specificity of 97% using intragenic markers. Similar results could be reached with intergenic markers, as well. The group noted that the addition of conventional clinical predictors or mental state analyses did not further improve performance. The analysis highlighted a number of genes and pathways known to be disrupted in Alzheimer's disease. Epigenetically altered genes included, for instance, CR1L and CTSV, which are involved in the morphology of the cerebral cortex, as well as S1PR1 and LTB4R, which are involved in inflammatory response.

Ray O. Bahado-Singh, MD, a Professor of Obstetrics and Gynecology and lead author of the study, said, “We found that the genetic analysis accurately predicted the absence or presence of Alzheimer's, allowing us to read what is going on in the brain through the blood. The results also gave us a readout of the abnormalities that are causing Alzheimer's disease. This has future promise for developing targeted treatment to interrupt the disease process.” The study was published on March 31, 2021 in the journal PLOS ONE.

Related Links:
Oakland University-William Beaumont School of Medicine
Zymo Research
Illumina


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Sekisui Diagnostics UK Ltd.