LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Alzheimer's Progression Tracked with Blood Biomarkers

By LabMedica International staff writers
Posted on 28 Jan 2021
Print article
Image: The Simoa HD-X fully automated immunoassay platform with multiplexing and custom assay capability (Photo courtesy of Quanterix Corporation).
Image: The Simoa HD-X fully automated immunoassay platform with multiplexing and custom assay capability (Photo courtesy of Quanterix Corporation).
Alzheimer disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau in the brain. These neuropathological changes are believed to take part in a cascade of events that result in a characteristic neurodegeneration pattern followed by progressive cognitive impairment.

Tracking neurodegenerative changes in vivo is important for monitoring AD progression. Recent evidence suggests that blood-based biomarkers might be useful to detect AD pathology, potentially promoting the widespread use of biomarkers in the diagnostic workup of AD and clinical trial screening. Among candidate disease-specific biomarkers in blood, plasma phosphorylated tau at threonine 181 (p-tau181) has shown promise as a marker of disease status.

An international team of scientists led by the University of Gothenburg (Gothenburg, Sweden) examined at data from 1,113 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study from 2007 to 2016. The average age of the group was 74 and 89% were white. Overall, 378 people (34%) were cognitively unimpaired and 735 (66%) were cognitively impaired. Of those who were impaired, 537 people had mild cognitive impairment and 198 people had Alzheimer's dementia.

Follow-up blood sampling was performed for up to eight years. Participants had plasma p-tau181 and neurofilament light chain (Nfl) measurements and at least one radiolabeled fluorodeoxyglucose (FDG) PET or structural MRI scan performed at the same study visit. Plasma p-tau181 concentration was measured using a novel assay developed in-house on the single-molecule array HD-X instrument (Simoa; Quanterix Corporation, Lexington, MA, USA), and Plasma NfL concentration was also measured using Simoa technology.

The scientists reported that baseline plasma p-tau181 levels were tied to cognitive decline plus concurrent and prospective neurodegeneration in Alzheimer's-characteristic brain regions on MRI and FDG-PET. Longitudinal changes in p-tau181 paralleled cognitive decline and progression of neurodegeneration in these regions. Plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in Alzheimer's-vulnerable areas on imaging. Plasma p-tau181 specifically was linked with cognitive impairment and neurodegeneration in people who were Aβ+. Plasma NfL was tied to cognitive decline and neurodegeneration in both Aβ+ and Aβ− groups.

Michael Scholl, PhD, an Associate Professor and a senior author of the study, said, “Our findings have clear and novel implications for these tests both as diagnostic tools and as outcome measures in clinical trials, as we showed that measurement of p-tau181 in blood is a reliable biomarker for Alzheimer's disease specifically and NfL is a reliable marker for neurodegenerative diseases in general.”

The authors concluded that t plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials. The study was published on January 11, 2021 in the journal JAMA Neurology.

Related Links:
University of Gothenburg
Quanterix Corporation


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.