Autoantibody Timing Predicts Genetically At-Risk Children for Diabetes
By LabMedica International staff writers Posted on 11 Nov 2020 |

Image: Autoantibody order, timing helps predict genetically susceptible children most likely to get type 1 diabetes (Photo courtesy of the Morsani College of Medicine).
While antibodies are molecules produced by the body's immune system to detect and destroy specific viruses, bacteria and other harmful substances, autoantibodies are antibodies that target a person's own healthy tissue. In the case of type 1 diabetes (T1D), a misdirected autoimmune response attacks the pancreas and gradually destroys the organ's insulin-producing beta cells.
Without the hormone insulin the body cannot regulate its blood sugar levels, which can cause serious, long-term medical complications such as cardiovascular disease, nerve and kidney damage, and vision loss. Children (and adults) with T1D must monitor their dietary intake and exercise and take insulin injections, or use an insulin pump, daily to help control their blood sugar levels.
A large team of international scientists working with the University of South Florida (Tampa, FL, USA) followed children with increased genetic risk for T1D, every three months, from the age of three months up to 15 years, for the development of a first-appearing autoantibody directed against pancreatic insulin-producing cells: glutamic acid decarboxylase antibody (GADA), insulin autoantibody (IAA), or insulinoma-associated-protein-2 autoantibody (IA2-2A). The team also looked for the subsequent appearance of a second autoantibody and further progression to T1D. Zinc transporter 8 autoantibody (ZnT8A) was only measured in children who developed an IAA, GADA, or IA-2A.
The team reported that of the 608 study participants, all testing positive for either a first-appearing IAA or GADA, more than half (336) developed a second autoantibody. Furthermore, 53% of these 336 children with a second antibody progressed to T1D within about 3.5 years. Only about 10% of the 272 children testing positive for a single autoantibody at the end of the follow-up for this study had transitioned to T1D.
The younger the child at the time they tested positive for a first autoantibody, the greater their risk for developing a second autoantibody. Conversely, the risk for T1D decreased if the first autoantibody appeared when the child was older. Children testing positive for a second autoantibody, regardless of the type, had at least a five-fold increased risk of progressing to T1D, compared to children who stayed single autoantibody positive. IA-2A, as a second autoantibody, conferred the highest risk, compared with GADA, IAA, or ZnT8A. Risk of progression to T1D was influenced by how quickly the second autoantibody appeared. Emergence of a second autoantibody within a year of the first doubled the risk of progression to T1D. Children's likelihood of developing T1D declined as the months between the first and second-appearing autoantibodies increased.
Kendra Vehik, PhD, a professor of epidemiology and lead author of the study, said, “If a clinician knows that a young child testing positive for IA-2A as their second-appearing autoantibody will be at a higher risk to more rapidly progress to type 1 diabetes, they can reduce the risk of symptomatic onset of disease. Clinicians can also educate the parents about the early signs of disease, such as, weight loss, extreme thirst, more frequent urination, or other diabetic ketoacidosis (DKA) symptoms.” The study was published in the September, 2020 edition of the journal Diabetes Care.
Related Links:
University of South Florida
Without the hormone insulin the body cannot regulate its blood sugar levels, which can cause serious, long-term medical complications such as cardiovascular disease, nerve and kidney damage, and vision loss. Children (and adults) with T1D must monitor their dietary intake and exercise and take insulin injections, or use an insulin pump, daily to help control their blood sugar levels.
A large team of international scientists working with the University of South Florida (Tampa, FL, USA) followed children with increased genetic risk for T1D, every three months, from the age of three months up to 15 years, for the development of a first-appearing autoantibody directed against pancreatic insulin-producing cells: glutamic acid decarboxylase antibody (GADA), insulin autoantibody (IAA), or insulinoma-associated-protein-2 autoantibody (IA2-2A). The team also looked for the subsequent appearance of a second autoantibody and further progression to T1D. Zinc transporter 8 autoantibody (ZnT8A) was only measured in children who developed an IAA, GADA, or IA-2A.
The team reported that of the 608 study participants, all testing positive for either a first-appearing IAA or GADA, more than half (336) developed a second autoantibody. Furthermore, 53% of these 336 children with a second antibody progressed to T1D within about 3.5 years. Only about 10% of the 272 children testing positive for a single autoantibody at the end of the follow-up for this study had transitioned to T1D.
The younger the child at the time they tested positive for a first autoantibody, the greater their risk for developing a second autoantibody. Conversely, the risk for T1D decreased if the first autoantibody appeared when the child was older. Children testing positive for a second autoantibody, regardless of the type, had at least a five-fold increased risk of progressing to T1D, compared to children who stayed single autoantibody positive. IA-2A, as a second autoantibody, conferred the highest risk, compared with GADA, IAA, or ZnT8A. Risk of progression to T1D was influenced by how quickly the second autoantibody appeared. Emergence of a second autoantibody within a year of the first doubled the risk of progression to T1D. Children's likelihood of developing T1D declined as the months between the first and second-appearing autoantibodies increased.
Kendra Vehik, PhD, a professor of epidemiology and lead author of the study, said, “If a clinician knows that a young child testing positive for IA-2A as their second-appearing autoantibody will be at a higher risk to more rapidly progress to type 1 diabetes, they can reduce the risk of symptomatic onset of disease. Clinicians can also educate the parents about the early signs of disease, such as, weight loss, extreme thirst, more frequent urination, or other diabetic ketoacidosis (DKA) symptoms.” The study was published in the September, 2020 edition of the journal Diabetes Care.
Related Links:
University of South Florida
Latest Pathology News
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more