LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

An Electrochemical Bio-barcode Device for Home Disease Monitoring and Diagnosis

By LabMedica International staff writers
Posted on 28 Oct 2020
Image: A recently developed electrochemical bio‐barcode device paired with a smartphone enables cancer patients to read critical biomarker levels at home in samples of self-drawn blood (Photo courtesy of Georgia Kirkos, McMaster University)
Image: A recently developed electrochemical bio‐barcode device paired with a smartphone enables cancer patients to read critical biomarker levels at home in samples of self-drawn blood (Photo courtesy of Georgia Kirkos, McMaster University)
A point-of-care (POC) electrochemical bio‐barcode device and assay system have been developed to enable analysis of protein biomarkers in undiluted and unprocessed human plasma samples.

There is a need for biosensing systems that can be operated at the POC for disease screening and diagnostics and health monitoring. In spite of this, simple to operate systems with the required analytical sensitivity and specificity for clinical samples remain a rarity.

To correct this situation investigators at McMaster University (Hamilton, Canada) and Brock University (St. Catharines, Canada) devised an electrochemical bio‐barcode assay (e‐biobarcode assay) that integrated biorecognition with signal transduction using molecular (DNA/protein) machines and signal readout using nanostructured electrodes.

The design of the e‐biobarcode assay eliminated multistep processing and used a single step for analysis following sample collection into the reagent tube. In use, a drop of blood is added to a vial of reactive solution, and a small amount of the mixture is placed onto a strip and inserted into a reader. In minutes, the device determines the concentration of an antigen.

In the current study, the investigators demonstrated the clinically relevant determination of prostate specific antigen (PSA) - the biomarker for prostate cancer - in undiluted and unprocessed human plasma.

"This is another step toward truly personalized medicine," said senior author Dr. Leyla Soleymani, associate professor of engineering physics at McMaster University. "We are getting away from centralized, lab-based equipment for this kind of testing. This would make monitoring much more accessible and cut down on the number of times patients need to leave home to provide blood samples."

"Once commercialized, this device will be a paradigm shift for cancer diagnosis and prognosis," said contributing author Dr. Feng Li, associate professor of chemistry at Brock University. "Since this device is a lot more accessible and user-friendly than conventional technologies, patients will be more willing to use it, which can improve clinical outcomes and save lives."

The e‐biobarcode assay was described in the October 7, 2020, online edition of the journal Angewandte Chemie.

Related Links:
McMaster University
Brock University


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more