MicroRNA-Based Liquid Biopsy Assay for Early Diagnosis of Head and Neck Cancer
By LabMedica International staff writers Posted on 09 Sep 2020 |

Image: Illustration depicting tumor formation in the tissues of the oropharynx (Photo courtesy of Wikimedia Commons)
A microRNA-based liquid biopsy assay has been developed that enables early diagnosis of oropharyngeal squamous cell carcinoma, a disease causing hundreds of thousands of fatalities each year.
Oropharyngeal squamous cell carcinoma (OPSCC), also known as tonsil cancer or head and neck cancer, is a disease in which abnormal cells with the potential to both grow locally and metastasize to other parts of the body are found in the tissue of the part of the throat (oropharynx) that includes the base of the tongue, the tonsils, the soft palate, and the walls of the pharynx. The two types of oropharyngeal cancers are HPV-positive oropharyngeal cancer, which is caused by an oral human papillomavirus (HPV) infection; and HPV-negative oropharyngeal cancer, which is linked to use of alcohol, tobacco, or both. OPSCC is frequently diagnosed at an advanced stage, since the disease often causes minimal symptoms other than metastasis to neck lymph nodes.
Tumor cells release microRNA (miRNA)-containing small extracellular vesicles into their extracellular environment and these vesicles are present in circulating blood. Thus, the miRNA content of circulating small extracellular vesicles has the potential to provide a unique molecular signature for multiple possibilities such as diagnosis, prognosis and surveillance of cancers.
Extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies, are cell-derived lipid-bilayer-enclosed structures, with sizes ranging from 30 to 5,000 nanometers. The vesicles, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies (MVBs) fuse with the plasma membrane, or they are released directly from the plasma membrane.
Previous studies have suggested that MiRNAs are potential biomarkers for early head and neck squamous cell cancer diagnosis, prognosis, recurrence, and presence of metastatic disease. However, there is no widespread agreement on a panel of miRNAs with clinically meaningful utility for head and neck squamous cell cancers. This could be due to variations in the collection, storage, pre-processing, and isolation of RNA, but several reports have indicated that the selection and reproducibility of biomarkers has been widely affected by the methods used for data analysis. The primary analysis issues appear to be model overfitting and the incorrect application of statistical techniques.
Seeking better tools for diagnosis of head and neck cancer, investigators at Flinders University (Adelaide, Australia) developed a robust statistical approach to identify a miRNA signature that can distinguish controls and patients with inflammatory disease from patients with human papilloma virus positive (HPV+) OPSCC.
For this study, the investigators harvested small extracellular vesicles from the serum of 20 control patients, 20 patients with gastroesophageal reflux disease (GORD), and 40 patients with locally advanced HPV+ OPSCC. MicroRNAs were purified, and expression profiled using ThermoFisher Scientific (Waltham, MA, USA) OpenArray technology. A novel cross validation method, using lasso regression, was developed to stabilize selection of miRNAs for inclusion in a prediction model. The method, named StaVarSel (for Stable Variable Selection), was used to derive a diagnostic biomarker signature.
Results revealed that a standard cross validation approach was unable to produce a biomarker signature with good cross validated predictive capacity. In contrast, StaVarSel produced a regression model containing 11 miRNA ratios with potential clinical utility.
Senior author Dr. Damian Hussey, a researcher in medicine and public health at Flinders University, said, "MicroRNAs are potential biomarkers for early head and neck squamous cell cancer diagnosis, prognosis, recurrence, and presence of metastatic disease. However, there is no widespread agreement on a panel of miRNAs with clinically meaningful utility for head and neck squamous cell cancers."
The liquid biopsy diagnostic assay for head and neck cancer was described in the July 10, 2020, online edition of the Journal of Translational Medicine.
Related Links:
Flinders University
ThermoFisher Scientific
Oropharyngeal squamous cell carcinoma (OPSCC), also known as tonsil cancer or head and neck cancer, is a disease in which abnormal cells with the potential to both grow locally and metastasize to other parts of the body are found in the tissue of the part of the throat (oropharynx) that includes the base of the tongue, the tonsils, the soft palate, and the walls of the pharynx. The two types of oropharyngeal cancers are HPV-positive oropharyngeal cancer, which is caused by an oral human papillomavirus (HPV) infection; and HPV-negative oropharyngeal cancer, which is linked to use of alcohol, tobacco, or both. OPSCC is frequently diagnosed at an advanced stage, since the disease often causes minimal symptoms other than metastasis to neck lymph nodes.
Tumor cells release microRNA (miRNA)-containing small extracellular vesicles into their extracellular environment and these vesicles are present in circulating blood. Thus, the miRNA content of circulating small extracellular vesicles has the potential to provide a unique molecular signature for multiple possibilities such as diagnosis, prognosis and surveillance of cancers.
Extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies, are cell-derived lipid-bilayer-enclosed structures, with sizes ranging from 30 to 5,000 nanometers. The vesicles, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies (MVBs) fuse with the plasma membrane, or they are released directly from the plasma membrane.
Previous studies have suggested that MiRNAs are potential biomarkers for early head and neck squamous cell cancer diagnosis, prognosis, recurrence, and presence of metastatic disease. However, there is no widespread agreement on a panel of miRNAs with clinically meaningful utility for head and neck squamous cell cancers. This could be due to variations in the collection, storage, pre-processing, and isolation of RNA, but several reports have indicated that the selection and reproducibility of biomarkers has been widely affected by the methods used for data analysis. The primary analysis issues appear to be model overfitting and the incorrect application of statistical techniques.
Seeking better tools for diagnosis of head and neck cancer, investigators at Flinders University (Adelaide, Australia) developed a robust statistical approach to identify a miRNA signature that can distinguish controls and patients with inflammatory disease from patients with human papilloma virus positive (HPV+) OPSCC.
For this study, the investigators harvested small extracellular vesicles from the serum of 20 control patients, 20 patients with gastroesophageal reflux disease (GORD), and 40 patients with locally advanced HPV+ OPSCC. MicroRNAs were purified, and expression profiled using ThermoFisher Scientific (Waltham, MA, USA) OpenArray technology. A novel cross validation method, using lasso regression, was developed to stabilize selection of miRNAs for inclusion in a prediction model. The method, named StaVarSel (for Stable Variable Selection), was used to derive a diagnostic biomarker signature.
Results revealed that a standard cross validation approach was unable to produce a biomarker signature with good cross validated predictive capacity. In contrast, StaVarSel produced a regression model containing 11 miRNA ratios with potential clinical utility.
Senior author Dr. Damian Hussey, a researcher in medicine and public health at Flinders University, said, "MicroRNAs are potential biomarkers for early head and neck squamous cell cancer diagnosis, prognosis, recurrence, and presence of metastatic disease. However, there is no widespread agreement on a panel of miRNAs with clinically meaningful utility for head and neck squamous cell cancers."
The liquid biopsy diagnostic assay for head and neck cancer was described in the July 10, 2020, online edition of the Journal of Translational Medicine.
Related Links:
Flinders University
ThermoFisher Scientific
Latest Molecular Diagnostics News
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more