Nanostar Biosensors Use Raman Scattering for Direct Detection of Cancer-Related MicroRNAs
By LabMedica International staff writers Posted on 03 Aug 2020 |

Image: Micrograph of gold nanostar biosensors used to detect cancer-related microRNAs (Photo courtesy of Duke University School of Engineering)
A novel non-invasive nanoparticle-based assay detects cancer-related microRNAs without use of labels or target amplification.
MicroRNAs (miRNAs) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia, and cardiovascular conditions. However, due to technical difficulties in detecting these small molecules, miRNAs have not been adopted into routine clinical practice for early diagnostics. Thus, it is important to develop alternative detection strategies that could offer more advantages over conventional methods.
In this regard, investigators at Duke University (Durham, NC, USA) developed nanophotonics technology termed "the inverse molecular sentinel (iMS) nanobiosensor, with surface-enhanced Raman scattering (SERS) detection".
The iMS-SERS technique is based on plasmonics, which refers to the enhanced electromagnetic properties of metallic nanostructures. The term plasmonics is derived from "plasmons", which are the quanta associated with longitudinal waves propagating in matter through the collective motion of large numbers of electrons. Incident light, usually from a laser, irradiating these surfaces excites conduction electrons in the metal, and induces excitation of surface plasmons leading to enormous electromagnetic enhancement of spectral signature, such as surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for ultrasensitive detection of chemical and biological species.
The SERS nanoprobe used in the current study relied on plasmonic-active nanostars as the sensing platform. An “OFF-to-ON” signal switch was based on a nonenzymatic strand-displacement process and the conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. This technique was used previously to detect a synthetic DNA sequence of interest. In this study, the design of the nanoprobe was modified to be used for the detection of short miRNA sequences.
In the current study, the investigators found that the iMS-SERS nanostar method detected miR-21, the microRNA biomarker linked to esophageal adenocarcinoma (EAC) and Barrett's esophagus (BE), the premalignant metaplasia associated with EAC. This approach enabled the direct detection of the esophageal cancer biomarker in RNA extracted from 17 endoscopic tissue biopsies. Thus, the potential of this label-free, homogeneous biosensor for cancer diagnosis without the need for target amplification was demonstrated by discriminating esophageal cancer and Barrett's esophagus from normal tissue with notable diagnostic accuracy.
"Gold nanostars have multiple spikes that can act as lighting rods for enhancing electromagnetic waves, which is a unique feature of the particle's shape," said senior author Dr. Tuan Vo-Dinh, professor of biomedical engineering at Duke University. "Our tiny nanosensors, called "inverse molecular sentinels", take advantage of this ability to create clear signals of the presence of multiple microRNAs. The Raman signals of label molecules exhibit sharp peaks with very specific colors like spectral fingerprints that make them easily distinguished from one another when detected. Thus we can actually design different sensors for different microRNAs on nanostars, each with label molecules exhibiting their own specific spectral fingerprints. And because the signal is so strong, we can detect each one of these fingerprints independently of each other."
"The general research focus in my lab has been on the early detection of diseases in people before they even know they are sick," said Dr.Vo-Dinh. "And to do that, you need to be able to go upstream, at the genomic level, to look at biomarkers like microRNA."
The gold nanostar paper was published in the May 4, 2020, online edition of the journal Analyst.
Related Links:
Duke University
MicroRNAs (miRNAs) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia, and cardiovascular conditions. However, due to technical difficulties in detecting these small molecules, miRNAs have not been adopted into routine clinical practice for early diagnostics. Thus, it is important to develop alternative detection strategies that could offer more advantages over conventional methods.
In this regard, investigators at Duke University (Durham, NC, USA) developed nanophotonics technology termed "the inverse molecular sentinel (iMS) nanobiosensor, with surface-enhanced Raman scattering (SERS) detection".
The iMS-SERS technique is based on plasmonics, which refers to the enhanced electromagnetic properties of metallic nanostructures. The term plasmonics is derived from "plasmons", which are the quanta associated with longitudinal waves propagating in matter through the collective motion of large numbers of electrons. Incident light, usually from a laser, irradiating these surfaces excites conduction electrons in the metal, and induces excitation of surface plasmons leading to enormous electromagnetic enhancement of spectral signature, such as surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for ultrasensitive detection of chemical and biological species.
The SERS nanoprobe used in the current study relied on plasmonic-active nanostars as the sensing platform. An “OFF-to-ON” signal switch was based on a nonenzymatic strand-displacement process and the conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. This technique was used previously to detect a synthetic DNA sequence of interest. In this study, the design of the nanoprobe was modified to be used for the detection of short miRNA sequences.
In the current study, the investigators found that the iMS-SERS nanostar method detected miR-21, the microRNA biomarker linked to esophageal adenocarcinoma (EAC) and Barrett's esophagus (BE), the premalignant metaplasia associated with EAC. This approach enabled the direct detection of the esophageal cancer biomarker in RNA extracted from 17 endoscopic tissue biopsies. Thus, the potential of this label-free, homogeneous biosensor for cancer diagnosis without the need for target amplification was demonstrated by discriminating esophageal cancer and Barrett's esophagus from normal tissue with notable diagnostic accuracy.
"Gold nanostars have multiple spikes that can act as lighting rods for enhancing electromagnetic waves, which is a unique feature of the particle's shape," said senior author Dr. Tuan Vo-Dinh, professor of biomedical engineering at Duke University. "Our tiny nanosensors, called "inverse molecular sentinels", take advantage of this ability to create clear signals of the presence of multiple microRNAs. The Raman signals of label molecules exhibit sharp peaks with very specific colors like spectral fingerprints that make them easily distinguished from one another when detected. Thus we can actually design different sensors for different microRNAs on nanostars, each with label molecules exhibiting their own specific spectral fingerprints. And because the signal is so strong, we can detect each one of these fingerprints independently of each other."
"The general research focus in my lab has been on the early detection of diseases in people before they even know they are sick," said Dr.Vo-Dinh. "And to do that, you need to be able to go upstream, at the genomic level, to look at biomarkers like microRNA."
The gold nanostar paper was published in the May 4, 2020, online edition of the journal Analyst.
Related Links:
Duke University
Latest Molecular Diagnostics News
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
- New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
- Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
- Blood Test Could Help More Women Survive Aggressive Triple Negative Breast Cancer
- CSF Test Distinguishes Prion Disease from Other Causes of Rapidly Progressive Dementia
- Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration
Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more