A Simple Paper-Based, Wearable Device for Long Term Sweat Analysis
By LabMedica International staff writers Posted on 16 Jun 2020 |

Image: The evaporation of sweat on paper pads could be used for fluid transport in a wearable device over long periods of time. The resulting dry layer of caked salts would preserve a `time-stamped` record of biomarkers of interest (Photo courtesy of Dr. Orlin D. Velev and co-authors, North Carolina State University)
By cleverly manipulating paper geometry, researchers created a paper-based wearable device to collect, transport, and analyze sweat for an extended period.
Sweat can be used to obtain an exact measurement of concentrations of medications in the blood. Furthermore, the concentrations of stress biomarkers (hormones and neurotransmitters) in bodily fluids such as sweat predict the physical and mental state of the individual.
A major problem that has so far restricted the use of wearable paper-based sweat sensors is that sweat contains salt, which, upon evaporation, becomes deposited on the device and interferes with fluid flow. To solve this problem, investigators at North Carolina State University (Raleigh, USA) characterized and analyzed how capillary action and evaporation could cooperatively be used to transport and process a sweat-like fluid containing dissolved salts and model analytes.
The investigators postulated that the joint action of capillary wicking and evaporation would sustain continuous and long-term withdrawal of the sweat-like fluid. In the laboratory they then demonstrated that paper strips of controlled geometry could passively pump fluid for sensing purposes for long duration. Thus, non-invasive osmotic extraction combined with paper microfluidics and evaporative disposal enabled sweat collection and monitoring for periods exceeding 10 days. Since the process was driven by the liquid wicking through paper, the device did not require an external power source.
The investigators also demonstrated that the salt film deposited at the evaporation pad would eventually lead to cessation of the process but at the same time would preserve a record of analytes that could be used for long-term biomarker monitoring in sweat.
"We expected that the flow of the model sweat will be suppressed by the deposition of a salt layer inside the drying pad," said senior author Dr. Orlin Velev, professor of chemical and biomolecular engineering at North Carolina State University. "By following the flow of model sweat, we found, quite surprisingly, that such a simple paper construct can achieve continuous sweat pumping and disposal for very long periods."
The wearable device for sweat analysis was described in the June 9, 2020, online edition of the journal Biomicrofluidics.
Related Links:
North Carolina State University
Sweat can be used to obtain an exact measurement of concentrations of medications in the blood. Furthermore, the concentrations of stress biomarkers (hormones and neurotransmitters) in bodily fluids such as sweat predict the physical and mental state of the individual.
A major problem that has so far restricted the use of wearable paper-based sweat sensors is that sweat contains salt, which, upon evaporation, becomes deposited on the device and interferes with fluid flow. To solve this problem, investigators at North Carolina State University (Raleigh, USA) characterized and analyzed how capillary action and evaporation could cooperatively be used to transport and process a sweat-like fluid containing dissolved salts and model analytes.
The investigators postulated that the joint action of capillary wicking and evaporation would sustain continuous and long-term withdrawal of the sweat-like fluid. In the laboratory they then demonstrated that paper strips of controlled geometry could passively pump fluid for sensing purposes for long duration. Thus, non-invasive osmotic extraction combined with paper microfluidics and evaporative disposal enabled sweat collection and monitoring for periods exceeding 10 days. Since the process was driven by the liquid wicking through paper, the device did not require an external power source.
The investigators also demonstrated that the salt film deposited at the evaporation pad would eventually lead to cessation of the process but at the same time would preserve a record of analytes that could be used for long-term biomarker monitoring in sweat.
"We expected that the flow of the model sweat will be suppressed by the deposition of a salt layer inside the drying pad," said senior author Dr. Orlin Velev, professor of chemical and biomolecular engineering at North Carolina State University. "By following the flow of model sweat, we found, quite surprisingly, that such a simple paper construct can achieve continuous sweat pumping and disposal for very long periods."
The wearable device for sweat analysis was described in the June 9, 2020, online edition of the journal Biomicrofluidics.
Related Links:
North Carolina State University
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more