Dual Immunohistochemistry Bone Marrow Staining Detects Hairy Cell Leukemia
By LabMedica International staff writers Posted on 03 Mar 2020 |

Image: PAX5/CD103 dual immunohistochemistry (IHC) staining showing no definite dual-positive cells, PAX5 stain showing brown nuclear staining in nonneoplastic B cells and CD103 showing membranous and cytoplasmic staining in a subset of T cells (Photo courtesy of US National Institute of Cancer).
Hairy cell leukemia (HCL) is a B-cell lymphoproliferative disorder characterized by distinct immunophenotype (positive for CD19, CD20, PAX5, CD22, CD11c, CD25, CD103, CD123, and CD200). Immunophenotypic analysis by flow cytometry (FC) is considered the gold standard for diagnosis of HCL.
However, both FC and immunohistochemistry (IHC) can be used to determine these markers. Although both trephine bone marrow biopsy and aspirate are vital for assessment of the extent of bone marrow infiltration, in some cases a cellular aspirate cannot be obtained because of extensive fibrosis (i.e. “dry tap”).
Hematologists at the US National Institute of Cancer (Bethesda, MD, USA) and their colleagues analyzed on 148 bone marrow biopsy specimens (123 male and 25 female patients; mean age, 59.8 years; range, 25-81 years) collected from patients evaluated for HCL between 2016 and 2017. Specimens were stained within 24 hours of collection with a panel of antibodies. Specimens were subsequently washed with phosphate-buffered saline and stained for 30 minutes at room temperature with antibody combinations in eight-color cocktails.
Multiparameter flow cytometry was performed using CD19, CD20, CD22, CD11c, CD25, CD103, CD123, surface light chains, CD5, and CD23. In parallel, bone marrow IHC was done using PAX5/CD103 and PAX5/tartrate-resistant alkaline phosphatase (TRAP) dual IHC stains Specimens were acquired on FACSCanto II (BD Biosciences, San Jose, CA, USA). The bone marrow biopsies were fixed in B-Plus fixative and decalcified in Rapid Cal Immuno (BBC Biochemical, Vernon, WA, USA) and paraffin embedded using Tissue Tek processor (Sakura Finetek, Torrance, CA, USA).
The scientists reported that the overall sensitivity of dual IHC stains was 81.4%, positive predictive value was 100%, and negative predictive value was 81.7%. All IHC-positive cases concurred with flow cytometry data, even when HCL burden was extremely low in the flow cytometry specimens (as low as 0.02% of all lymphoid cells). PAX5/CD103 dual IHC staining generated brown nuclear staining for PAX5 and red membranous and cytoplasmic staining for CD103. PAX5/TRAP dual IHC staining showed similar results for PAX5 and red membranous and cytoplasmic staining for TRAP.
The authors concluded that dual IHC staining is a sensitive tool for detecting HCL, even in cases with minimal disease involvement. All IHC-positive cases concurred with FC data, even when HCL burden was extremely low. Only 18.3% of dual IHC–negative cases were positive for low-level involvement by FC analysis. PAX5/CD103 dual IHC staining was slightly more sensitive than PAX5/TRAP dual IHC staining. The study was published in the March 2020 issue of the American Journal of Clinical Pathology.
Related Links:
US National Institute of Cancer
BD Biosciences
BBC Biochemical
Sakura Finetek
However, both FC and immunohistochemistry (IHC) can be used to determine these markers. Although both trephine bone marrow biopsy and aspirate are vital for assessment of the extent of bone marrow infiltration, in some cases a cellular aspirate cannot be obtained because of extensive fibrosis (i.e. “dry tap”).
Hematologists at the US National Institute of Cancer (Bethesda, MD, USA) and their colleagues analyzed on 148 bone marrow biopsy specimens (123 male and 25 female patients; mean age, 59.8 years; range, 25-81 years) collected from patients evaluated for HCL between 2016 and 2017. Specimens were stained within 24 hours of collection with a panel of antibodies. Specimens were subsequently washed with phosphate-buffered saline and stained for 30 minutes at room temperature with antibody combinations in eight-color cocktails.
Multiparameter flow cytometry was performed using CD19, CD20, CD22, CD11c, CD25, CD103, CD123, surface light chains, CD5, and CD23. In parallel, bone marrow IHC was done using PAX5/CD103 and PAX5/tartrate-resistant alkaline phosphatase (TRAP) dual IHC stains Specimens were acquired on FACSCanto II (BD Biosciences, San Jose, CA, USA). The bone marrow biopsies were fixed in B-Plus fixative and decalcified in Rapid Cal Immuno (BBC Biochemical, Vernon, WA, USA) and paraffin embedded using Tissue Tek processor (Sakura Finetek, Torrance, CA, USA).
The scientists reported that the overall sensitivity of dual IHC stains was 81.4%, positive predictive value was 100%, and negative predictive value was 81.7%. All IHC-positive cases concurred with flow cytometry data, even when HCL burden was extremely low in the flow cytometry specimens (as low as 0.02% of all lymphoid cells). PAX5/CD103 dual IHC staining generated brown nuclear staining for PAX5 and red membranous and cytoplasmic staining for CD103. PAX5/TRAP dual IHC staining showed similar results for PAX5 and red membranous and cytoplasmic staining for TRAP.
The authors concluded that dual IHC staining is a sensitive tool for detecting HCL, even in cases with minimal disease involvement. All IHC-positive cases concurred with FC data, even when HCL burden was extremely low. Only 18.3% of dual IHC–negative cases were positive for low-level involvement by FC analysis. PAX5/CD103 dual IHC staining was slightly more sensitive than PAX5/TRAP dual IHC staining. The study was published in the March 2020 issue of the American Journal of Clinical Pathology.
Related Links:
US National Institute of Cancer
BD Biosciences
BBC Biochemical
Sakura Finetek
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more
Non-Biopsy Approach to Transform Adult Celiac Disease Diagnoses
In the United States, the diagnosis of celiac disease in adults typically relies on a combination of serologic testing and a confirmatory small bowel biopsy during upper endoscopy. In contrast, European... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more