LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Microfluidic Device Simplifies Cancer Screening Procedures

By LabMedica International staff writers
Posted on 05 Aug 2019
Image: The experimental results of immunostained cells using the electroactive microwell array with barriers (EMAB) device (Photo courtesy of Dr. Soo Hyeon Kim, University of Tokyo).
Image: The experimental results of immunostained cells using the electroactive microwell array with barriers (EMAB) device (Photo courtesy of Dr. Soo Hyeon Kim, University of Tokyo).
A novel microfluidic device is set to simplify screening for cervical cancer by efficiently isolating and trapping single cells for identification using direct immunostaining techniques.

Several specific tests for cervical screening are available, including p16/Ki67 dual immunostaining for direct identification of cancerous cells in the cervix. Despite these advances in staining technology, manual screening of cells in an entire glass slide remains the standard clinical procedure for quantification and interpretation of immunocytochemical features of the cells.

To improve this situation, investigators at the University of Tokyo (Japan) developed a microfluidic device containing an electroactive microwell array with barriers (EMAB) for highly efficient single-cell trapping followed by on-chip immunofluorescence analysis with minimum loss of the sample.

The EMAB device utilizes patterned electrodes at the bottom of cell-sized microwells to trap single cells using dielectrophoresis (DEP) and cell-holding structures behind the microwells to stabilize the position of trapped cells even without functioning DEP.

The investigators evaluated the performance of the EMAB device for single-cell trapping by sequestering formalin-fixed HeLa cells (a human cervical cancer cell line) and for cell holding by monitoring the release of trapped cells after turning off DEP.

Results revealed that the device interacted with the fixed HeLa cells with 98% efficiency for cell-trapping and 92% efficiency for cell-holding. In addition, the investigators successfully demonstrated high-efficiency on-chip immunofluorescence analysis with minimal loss of sample.

"Major challenges were trapping suspended cells at the single-cell level and analyzing them using antibodies with minimum loss of trapped cells," said contributing author Dr. Soo Hyeon Kim, lecturer in the institute of industrial science at the University of Tokyo. "By just putting a small structure behind the microwell, the cells were efficiently stayed in the microwells even with the unstable flow used for delivery of reagents. Combining EMAB with p16/Ki67 dual immunostaining could be a useful tool to provide molecular evidence that might help pathologists make a cervical cancer diagnosis."

The EMAB device was described in the July 30, 2019, online edition of the journal Biomicrofluidics.

Related Links:
University of Tokyo

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Automated MALDI-TOF MS System
EXS 3000

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more