Methods Compared to Diagnose Schistosomiasis Japonica
By LabMedica International staff writers Posted on 28 Mar 2019 |

Image: The Maxwell 16 instrument used for genomic DNA isolation (Photo courtesy of Promega).
Zoonotic schistosomiasis in Asia, caused by Schistosoma japonicum, remains a major public health concern in China and the Philippines. If left untreated, it will develop into a chronic condition characterized by hepatosplenic disease and impaired physical and cognitive development.
There are three major categories of methods available for schistosomiasis diagnosis: parasitological detection (e.g. the Kato-Katz (KK) method); serology, including antibody-detection (AbD) and antigen-detection (AgD); and molecular assays (e.g. circulating nucleic acids detection).
A team of scientists collaborating with the QIMR Berghofer Medical Research Institute (Brisbane, Australia) collected clinical samples of feces and blood from 412 subjects from Northern Samar, the Philippines, in 2015. Serum samples of healthy individuals were obtained from Heilongjiang Province, a non-endemic area for schistosomiasis in China. For the KK method slides were examined under a light microscope by experienced laboratory technicians. Infection intensity was presented as the number of eggs per gram of feces (EPG). For accuracy determination, 10% of slides were randomly selected and re-examined by an experienced microscopist.
Genomic DNA isolation of fecal samples was performed using the Maxwell 16 Instrument. Serum DNA extraction was performed using a ChemagicTM360 instrument. Droplet digital polymerase chain reaction (ddPCR) assays was performed and following PCR amplification, the plate was transferred to a QX200 Droplet Reader for analysis. Diagnostic candidates for schistosomiasis japonica by enzyme-linked immunosorbent assay (ELISA) were also evaluated.
The team reported that compared with the ddPCR assay analyzing DNA from feces, exhibited the highest sensitivity, the recombinant antigens of SjSAP4 + Sj23-LHD-ELISA had the best accuracy (67.72%) among all five ELISA assays assessed. Schistosomiasis prevalence determined by the SjSAP4 + Sj23-LHD-ELISA and ddPCRs was similar and was at least 2.5 times higher than obtained with the KK method. However, the agreement between these assays was low. In terms of cost and logistical convenience, the SjSAP4 + Sj23-LHD-ELISA represent a cost-effective assay with considerable diagnostic merits. In contrast, although the ddPCR assays exhibited a high level of diagnostic performance, the high cost and the need for specialized equipment presents a major obstacle in their application in screening campaigns.
The authors concluded that the SjSAP4 + Sj23-LHD-ELISA represents a cost-effective tool for the diagnosis of schistosomiasis that could prove an important component in the monitoring of integrated control measures as elimination draws closer, whereas the ddPCR assays, in addition to their high sensitivity and specificity, are capable of quantifying infection intensity. The study was published on March 4, 2019, in the journal PLoS Neglected Tropical Diseases.
Related Links:
QIMR Berghofer Medical Research Institute
There are three major categories of methods available for schistosomiasis diagnosis: parasitological detection (e.g. the Kato-Katz (KK) method); serology, including antibody-detection (AbD) and antigen-detection (AgD); and molecular assays (e.g. circulating nucleic acids detection).
A team of scientists collaborating with the QIMR Berghofer Medical Research Institute (Brisbane, Australia) collected clinical samples of feces and blood from 412 subjects from Northern Samar, the Philippines, in 2015. Serum samples of healthy individuals were obtained from Heilongjiang Province, a non-endemic area for schistosomiasis in China. For the KK method slides were examined under a light microscope by experienced laboratory technicians. Infection intensity was presented as the number of eggs per gram of feces (EPG). For accuracy determination, 10% of slides were randomly selected and re-examined by an experienced microscopist.
Genomic DNA isolation of fecal samples was performed using the Maxwell 16 Instrument. Serum DNA extraction was performed using a ChemagicTM360 instrument. Droplet digital polymerase chain reaction (ddPCR) assays was performed and following PCR amplification, the plate was transferred to a QX200 Droplet Reader for analysis. Diagnostic candidates for schistosomiasis japonica by enzyme-linked immunosorbent assay (ELISA) were also evaluated.
The team reported that compared with the ddPCR assay analyzing DNA from feces, exhibited the highest sensitivity, the recombinant antigens of SjSAP4 + Sj23-LHD-ELISA had the best accuracy (67.72%) among all five ELISA assays assessed. Schistosomiasis prevalence determined by the SjSAP4 + Sj23-LHD-ELISA and ddPCRs was similar and was at least 2.5 times higher than obtained with the KK method. However, the agreement between these assays was low. In terms of cost and logistical convenience, the SjSAP4 + Sj23-LHD-ELISA represent a cost-effective assay with considerable diagnostic merits. In contrast, although the ddPCR assays exhibited a high level of diagnostic performance, the high cost and the need for specialized equipment presents a major obstacle in their application in screening campaigns.
The authors concluded that the SjSAP4 + Sj23-LHD-ELISA represents a cost-effective tool for the diagnosis of schistosomiasis that could prove an important component in the monitoring of integrated control measures as elimination draws closer, whereas the ddPCR assays, in addition to their high sensitivity and specificity, are capable of quantifying infection intensity. The study was published on March 4, 2019, in the journal PLoS Neglected Tropical Diseases.
Related Links:
QIMR Berghofer Medical Research Institute
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more