Genomic Atlas of Human Plasma Proteome Publicized
By LabMedica International staff writers Posted on 26 Jun 2018 |

Image: Duolink proximity ligation assay technology extends the capabilities of traditional protein techniques (Photo courtesy of Olink Proteomics).
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood.
Bringing in expression quantitative trait locus (QTL) and protein QTL data, biological pathway clues, drug database insights, and variants identified in prior genome-wide association studies, a team of scientists subsequently searched for plasma proteins contributing to common conditions, such as inflammatory bowel disease, as well as for potential drugs for altering these pathways.
A large team of scientists collaborating with those at the University of Cambridge (Cambridge, UK) characterized the genetic architecture of the human plasma proteome in healthy blood donors. The study involved about 50,000 participants, and the team systematically quantified levels for thousands of proteins in plasma samples from 3,301 seemingly healthy, genotyped individuals. With these data, they uncovered more than 1,900 interactions between almost 800 genomic regions and nearly 1,500 proteins.
The scientists used the SOMAscan, an aptamer-based multiplex protein assay. They quantified plasma levels of 3,622 proteins in blood samples from 3,301 healthy donors. They set those proteome data alongside genetic profiles for the participants, searching for associations between plasma proteins and 10.6 million autosomal SNPs that were imputed or directly assessed using Affymetrix Axiom UK Biobank arrays. The team's analysis uncovered 1,927 associations involving 1,478 proteins and 764 regions in the genome. Most of those associations, 89%, had not been described previously.
The team noted that 502 of the protein-associated loci appeared to act locally, or in cis, while 228 had trans effects on plasma proteins. The remaining 34 loci appeared to have both cis and trans protein interactions. They validated 106 of 163 proposed protein QTLs using an Olink protein assay (Uppsala, Sweden; www.olink.com) on samples from another 4,998 individuals, noting that the cis pQTLs appeared more apt to replicate than those involving longer-range trans interactions. After exploring the overlap between the proposed pQTLs and expression QTLs reported in the past, the investigators incorporated information from prior genome-wide association study.
The authors concluded that by linking genetic factors to diseases via specific proteins, their analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development. The study was published on June 6, 2018, in the journal Nature.
Related Links:
University of Cambridge
Bringing in expression quantitative trait locus (QTL) and protein QTL data, biological pathway clues, drug database insights, and variants identified in prior genome-wide association studies, a team of scientists subsequently searched for plasma proteins contributing to common conditions, such as inflammatory bowel disease, as well as for potential drugs for altering these pathways.
A large team of scientists collaborating with those at the University of Cambridge (Cambridge, UK) characterized the genetic architecture of the human plasma proteome in healthy blood donors. The study involved about 50,000 participants, and the team systematically quantified levels for thousands of proteins in plasma samples from 3,301 seemingly healthy, genotyped individuals. With these data, they uncovered more than 1,900 interactions between almost 800 genomic regions and nearly 1,500 proteins.
The scientists used the SOMAscan, an aptamer-based multiplex protein assay. They quantified plasma levels of 3,622 proteins in blood samples from 3,301 healthy donors. They set those proteome data alongside genetic profiles for the participants, searching for associations between plasma proteins and 10.6 million autosomal SNPs that were imputed or directly assessed using Affymetrix Axiom UK Biobank arrays. The team's analysis uncovered 1,927 associations involving 1,478 proteins and 764 regions in the genome. Most of those associations, 89%, had not been described previously.
The team noted that 502 of the protein-associated loci appeared to act locally, or in cis, while 228 had trans effects on plasma proteins. The remaining 34 loci appeared to have both cis and trans protein interactions. They validated 106 of 163 proposed protein QTLs using an Olink protein assay (Uppsala, Sweden; www.olink.com) on samples from another 4,998 individuals, noting that the cis pQTLs appeared more apt to replicate than those involving longer-range trans interactions. After exploring the overlap between the proposed pQTLs and expression QTLs reported in the past, the investigators incorporated information from prior genome-wide association study.
The authors concluded that by linking genetic factors to diseases via specific proteins, their analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development. The study was published on June 6, 2018, in the journal Nature.
Related Links:
University of Cambridge
Latest Molecular Diagnostics News
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more