New Diagnostic Tests Improve Care for Heart Failure Patients
|
By LabMedica International staff writers Posted on 17 Jan 2017 |
For the first time, researchers have developed tests that could improve treatment for heart failure patients by diagnosing the condition with greater accuracy, as well as by detecting the onset of congestive heart failure earlier.
Heart failure is a leading cause of hospitalization for people older than age 65 in developed “Western” countries. At present, the main blood tests used to aid in the diagnosis of heart failure are those for B-type natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). However, natriuretic peptide tests have a high false positive rate and a limited ability to detect the early and asymptomatic stages of the disease.
With the goal of overcoming the drawbacks of current heart failure tests, a group of researchers developed a diagnostic panel that provides a more comprehensive representation of the heart’s functioning by measuring multiple biological molecules. Led by Hugo A. Katus, MD, PhD, of Heidelberg University Hospital, the researchers began by identifying 92 metabolites (metabolic byproducts) that changed significantly in heart failure patients compared with healthy individuals. They chose 3 of these metabolites, which belong to the lipid classes of sphingomyelins, triglycerides, and phosphatidylcholines, for their cardiac lipid panel (CLP).
The researchers then tested the ability of CLP combined with NT-proBNP measurements to diagnose heart failure in 649 individuals who either had the condition, were healthy, or had pulmonary diseases (which can often be misidentified as heart failure). CLP plus NT-proBNP diagnosed heart failure with much greater certainty than NT-proBNP alone, even in the early and asymptomatic stages, demonstrating a high specificity of 97.6% while NT-proBNP by itself has a specificity of only 88.1%.
“A low false-positive rate is particularly important in the outpatient setting and may prevent patients from unnecessary diagnostic workup and treatment, which in turn will save resources and avoid potential side-effects,” said Dr. Katus, “A more accurate diagnosis of patients […] may accelerate adequate pharmacological or behavioral treatments for the reduction of mortality and morbidity.”
Heart failure can also progress to congestive heart failure, which occurs when fluid builds up in the limbs, lungs, and/or other organs as an indirect result of the heart’s weakened pumping. Systemic congestion is a major determinant of organ dysfunction and death in chronic heart failure patients. Currently, there is no reliable test that can diagnose congestion in its pre-symptomatic stages, which is needed so that healthcare providers can start or adjust decongestive therapy for patients before the condition worsens.
In a second paper, a group of researchers led by Alexandre Mebazaa, MD, of Université Paris Diderot showed that a test for the protein soluble CD146 (sCD146) could potentially detect congestion early. One of the initial signs of congestion is a subclinical increase of venous pressures. To determine if sCD146 is released as a response to this, the researchers compressed the dominant arm of 44 stable chronic heart failure patients and measured sCD146 levels in both arms at the start time and after 90 minutes. In the compressed arm, sCD146 levels increased significantly by 60 µg/L compared with a small 16 µg/L increase in the control arm. These results indicate that, if validated in larger studies, sCD146 could serve as a marker of increased venous pressure that signals the onset of congestion.
Both studies, by Mueller-Hennessen M et al and by Arrigo M et al, were published January 6, 2017, in the Cardiovascular Disease special issue of the journal Clinical Chemistry.
Heart failure is a leading cause of hospitalization for people older than age 65 in developed “Western” countries. At present, the main blood tests used to aid in the diagnosis of heart failure are those for B-type natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). However, natriuretic peptide tests have a high false positive rate and a limited ability to detect the early and asymptomatic stages of the disease.
With the goal of overcoming the drawbacks of current heart failure tests, a group of researchers developed a diagnostic panel that provides a more comprehensive representation of the heart’s functioning by measuring multiple biological molecules. Led by Hugo A. Katus, MD, PhD, of Heidelberg University Hospital, the researchers began by identifying 92 metabolites (metabolic byproducts) that changed significantly in heart failure patients compared with healthy individuals. They chose 3 of these metabolites, which belong to the lipid classes of sphingomyelins, triglycerides, and phosphatidylcholines, for their cardiac lipid panel (CLP).
The researchers then tested the ability of CLP combined with NT-proBNP measurements to diagnose heart failure in 649 individuals who either had the condition, were healthy, or had pulmonary diseases (which can often be misidentified as heart failure). CLP plus NT-proBNP diagnosed heart failure with much greater certainty than NT-proBNP alone, even in the early and asymptomatic stages, demonstrating a high specificity of 97.6% while NT-proBNP by itself has a specificity of only 88.1%.
“A low false-positive rate is particularly important in the outpatient setting and may prevent patients from unnecessary diagnostic workup and treatment, which in turn will save resources and avoid potential side-effects,” said Dr. Katus, “A more accurate diagnosis of patients […] may accelerate adequate pharmacological or behavioral treatments for the reduction of mortality and morbidity.”
Heart failure can also progress to congestive heart failure, which occurs when fluid builds up in the limbs, lungs, and/or other organs as an indirect result of the heart’s weakened pumping. Systemic congestion is a major determinant of organ dysfunction and death in chronic heart failure patients. Currently, there is no reliable test that can diagnose congestion in its pre-symptomatic stages, which is needed so that healthcare providers can start or adjust decongestive therapy for patients before the condition worsens.
In a second paper, a group of researchers led by Alexandre Mebazaa, MD, of Université Paris Diderot showed that a test for the protein soluble CD146 (sCD146) could potentially detect congestion early. One of the initial signs of congestion is a subclinical increase of venous pressures. To determine if sCD146 is released as a response to this, the researchers compressed the dominant arm of 44 stable chronic heart failure patients and measured sCD146 levels in both arms at the start time and after 90 minutes. In the compressed arm, sCD146 levels increased significantly by 60 µg/L compared with a small 16 µg/L increase in the control arm. These results indicate that, if validated in larger studies, sCD146 could serve as a marker of increased venous pressure that signals the onset of congestion.
Both studies, by Mueller-Hennessen M et al and by Arrigo M et al, were published January 6, 2017, in the Cardiovascular Disease special issue of the journal Clinical Chemistry.
Latest Immunology News
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
- Companion Diagnostic Test for CRC Patients Identifies Eligible Treatment Population
- Novel Tool Uses Deep Learning for Precision Cancer Therapy
- Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
- Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
- Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
- Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
- Novel Gene Signature Predicts Immunotherapy Response in Advanced Kidney Cancers
- New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response
Channels
Molecular Diagnostics
view channel
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read more
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








