Biomarker Signatures Predict Aging Health Quality
|
By LabMedica International staff writers Posted on 17 Jan 2017 |
A panel of 19 biomarkers in the blood was utilized to create molecular signatures that are able to predict how well an individual is aging and how severe the likelihood that he or she will develop an aging-related disease.
To establish these signatures, investigators at Boston University measured 19 blood biomarkers that included constituents of standard hematological measures, lipid biomarkers, and markers of inflammation and frailty in 4704 participants of the Long Life Family Study (LLFS). The biomarkers were selected based upon their noted quantitative change with age and specificity for inflammatory, hematological, metabolic, hormonal, or kidney functions.
The LLFS is a family-based study that enrolled 4935 participants including subjects and siblings (30%), their offspring (50%), and spouses (20%), with ages between 30 and 110 years. Approximately 40% of enrolled participants were born before 1935 and had a median age at enrollment of 90 years and 45% participants were male. Almost 55% of participants from the subject generation (birth year prior to 1935) have died since enrollment, with a median age at death of 96 years. Mortality in the generation born after 1935 is lower (3%) and among these few that have died, median age at death is currently 69 years.
The investigators used an agglomerative algorithm to analyze distribution of the 19 biomarkers and then grouped LLFS participants into clusters that yielded 26 different biomarker signatures.
To test whether these signatures were associated with differences in biological aging, the investigators correlated them with longitudinal changes in physiological functions and incident risk of cancer, cardiovascular disease, type II diabetes, and mortality using longitudinal data collected in the LLFS. One signature was found to be associated with significantly lower mortality, morbidity, and better physical function relative to the most common biomarker signature in LLFS, while nine other signatures were associated with less successful aging, characterized by higher risks for frailty, morbidity, and mortality.
"Many prediction and risk scores already exist for predicting specific diseases like heart disease," said first author Dr. Paola Sebastiani, professor of biostatistics at Boston University. "Here, though, we are taking another step by showing that particular patterns of groups of biomarkers can indicate how well a person is aging and his or her risk for specific age-related syndromes and diseases. These signatures depict differences in how people age, and they show promise in predicting healthy aging, changes in cognitive and physical function, survival, and age-related diseases like heart disease, stroke, type II diabetes, and cancer."
The study was published in the January 6, 2017, online edition of the journal Aging Cell.
To establish these signatures, investigators at Boston University measured 19 blood biomarkers that included constituents of standard hematological measures, lipid biomarkers, and markers of inflammation and frailty in 4704 participants of the Long Life Family Study (LLFS). The biomarkers were selected based upon their noted quantitative change with age and specificity for inflammatory, hematological, metabolic, hormonal, or kidney functions.
The LLFS is a family-based study that enrolled 4935 participants including subjects and siblings (30%), their offspring (50%), and spouses (20%), with ages between 30 and 110 years. Approximately 40% of enrolled participants were born before 1935 and had a median age at enrollment of 90 years and 45% participants were male. Almost 55% of participants from the subject generation (birth year prior to 1935) have died since enrollment, with a median age at death of 96 years. Mortality in the generation born after 1935 is lower (3%) and among these few that have died, median age at death is currently 69 years.
The investigators used an agglomerative algorithm to analyze distribution of the 19 biomarkers and then grouped LLFS participants into clusters that yielded 26 different biomarker signatures.
To test whether these signatures were associated with differences in biological aging, the investigators correlated them with longitudinal changes in physiological functions and incident risk of cancer, cardiovascular disease, type II diabetes, and mortality using longitudinal data collected in the LLFS. One signature was found to be associated with significantly lower mortality, morbidity, and better physical function relative to the most common biomarker signature in LLFS, while nine other signatures were associated with less successful aging, characterized by higher risks for frailty, morbidity, and mortality.
"Many prediction and risk scores already exist for predicting specific diseases like heart disease," said first author Dr. Paola Sebastiani, professor of biostatistics at Boston University. "Here, though, we are taking another step by showing that particular patterns of groups of biomarkers can indicate how well a person is aging and his or her risk for specific age-related syndromes and diseases. These signatures depict differences in how people age, and they show promise in predicting healthy aging, changes in cognitive and physical function, survival, and age-related diseases like heart disease, stroke, type II diabetes, and cancer."
The study was published in the January 6, 2017, online edition of the journal Aging Cell.
Latest Clinical Chem. News
- New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
- Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
- Study Compares Analytical Performance of Quantitative Hepatitis B Surface Antigen Assays
- Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
- Compact Raman Imaging System Detects Subtle Tumor Signals
- Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
- POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
- Online Tool Detects Drug Exposure Directly from Patient Samples
- Chemical Imaging Probe Could Track and Treat Prostate Cancer
- Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







