We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Simplified Assay Quantifies Circulating Activated Protein C

By LabMedica International staff writers
Posted on 24 Aug 2016
Print article
Image: A histopathology of brain tissue showing acute venous thromboembolism of unknown etiology (Photo courtesy of Peter Anderson).
Image: A histopathology of brain tissue showing acute venous thromboembolism of unknown etiology (Photo courtesy of Peter Anderson).
The protein C (PC) anticoagulant pathway plays a crucial role in the regulation of fibrin formation by inactivating the pro-coagulant cofactors factor Va and factor VIIIa.

The physiological relevance of PC in the regulation of blood coagulation arises from the description of increased risk of venous thromboembolism (VTE) associated with both hereditary PC deficiency and low circulating activated protein C (APC) levels. Available assays for circulating levels of APC are either time-consuming or difficult to use in a routine laboratory, or have a detection limit above normal levels.

Scientists at the Instituto de Investigación Sanitaria La Fe (Valencia, Spain) developed a simplified assay that measures both the in vivo free APC and the in vivo APC complexed to PC inhibitor (PCI). They measured APC levels, with both assays, in 339 plasma samples, 165 from patients with venous thromboembolism (VTE) and 174 from healthy individuals.

The PCI antigens were determined and PCI concentration was expressed in nM, assuming a molecular weight for PCI of 57,000 and a concentration of plasma PCI, in pooled normal plasma, of 87.7 nM. APC: PCI complexes were determined by a sandwich enzyme-linked immunosorbent assay (ELISA). Microplates were coated with a monoclonal antibody to PC and complexes were detected with peroxidase-labeled polyclonal antibodies to PCI. APC concentration in the complex is expressed in nM, assuming a molecular weight of APC of 57,000.

The investigators found that the mean APC level in the 339 samples was 0.038 ± 0.010 nM, using a previous assay that measures only the in vivo APC level, and 0.041 ± 0.010 nM with the present new assay. The mean APC level in VTE patients was 0.034 ± 0.009 nM (previous assay) and 0.037 ± 0.009 nM (new assay), significantly lower than those in controls. In both groups there was a significant correlation between the levels obtained by the two assays.

The authors concluded that their results show that both assays are equivalent, and confirm that the APC level is lower in VTE patients than in healthy individuals. Therefore, the new simplified assay, which measures the sum of circulating free APC and APC complexed to PCI, may be used to estimate the level of circulating APC, and will allow its use in routine laboratories. The study was published on August 1, 2016, in the journal Clinica Chimica Acta.

Related Links:
Instituto de Investigación Sanitaria La Fe


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED

Print article

Channels

Molecular Diagnostics

view channel
Image: The test monitors blood levels of DNA fragments released by dying tumor cells (Photo courtesy of 123RF)

Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer

Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.