Spatial Transcriptomics Technique Enables Visualization of Gene Expression in Tissues
|
By LabMedica International staff writers Posted on 12 Jul 2016 |

Image: Researchers have devised a new high-resolution method for studying which genes are active in a tissue. The method can be used on all types of tissue and is valuable to both preclinical research and cancer diagnostics (Photo courtesy of the Karolinska Institutet / the Royal Institute of Technology).
A team of Swedish researchers has developed a high-resolution method for resolving the transcriptome – the library of active genes and RNAs – in histological samples of patients' tissues.
Analysis of the pattern of proteins or messenger RNAs (mRNAs) in histological tissue sections is a vital aspect of biomedical research and diagnostics. Due to the complexities of current techniques, this typically involves the visualization of only a few proteins or expressed genes at a time.
Investigators at the Karolinska Institutet (Stockholm, Sweden) and the Royal Institute of Technology (Stockholm, Sweden) described a method for visualization and quantitative analysis of the complete transcriptome with spatial resolution in individual tissue sections.
The method, which they called "spatial transcriptomics", relied on positioning histological sections onto arrayed reverse transcription primers with unique positional barcodes. Reverse transcription was followed by sequencing and computational reconstruction, and this could be done for multiple genes simultaneously. By positioning histological sections on arrayed reverse transcription primers with unique positional barcodes, the investigators demonstrated high-quality RNA-sequencing data with maintained two-dimensional positional information from mouse brain and human breast cancer.
"By placing tissue sections on a glass slide on which we have placed DNA strands with built in address labels we have been able to label the RNA molecules formed by active genes," said senior author Dr. Jonas Frisén, professor of stem cell research at the Karolinska Institutet. "When we analyze the presence of RNA molecules in the sample, the address labels show where in the section the molecules were and we can get high-resolution information on where different genes are active. It makes it possible to study which genes are active in tissues with greater resolution and precision than ever before, which is valuable to both basic research and diagnostics."
The method was described in detail in a paper published in the July 1, 2016, issue of the journal Science.
Related Links:
Karolinska Institutet
Royal Institute of Technology
Analysis of the pattern of proteins or messenger RNAs (mRNAs) in histological tissue sections is a vital aspect of biomedical research and diagnostics. Due to the complexities of current techniques, this typically involves the visualization of only a few proteins or expressed genes at a time.
Investigators at the Karolinska Institutet (Stockholm, Sweden) and the Royal Institute of Technology (Stockholm, Sweden) described a method for visualization and quantitative analysis of the complete transcriptome with spatial resolution in individual tissue sections.
The method, which they called "spatial transcriptomics", relied on positioning histological sections onto arrayed reverse transcription primers with unique positional barcodes. Reverse transcription was followed by sequencing and computational reconstruction, and this could be done for multiple genes simultaneously. By positioning histological sections on arrayed reverse transcription primers with unique positional barcodes, the investigators demonstrated high-quality RNA-sequencing data with maintained two-dimensional positional information from mouse brain and human breast cancer.
"By placing tissue sections on a glass slide on which we have placed DNA strands with built in address labels we have been able to label the RNA molecules formed by active genes," said senior author Dr. Jonas Frisén, professor of stem cell research at the Karolinska Institutet. "When we analyze the presence of RNA molecules in the sample, the address labels show where in the section the molecules were and we can get high-resolution information on where different genes are active. It makes it possible to study which genes are active in tissues with greater resolution and precision than ever before, which is valuable to both basic research and diagnostics."
The method was described in detail in a paper published in the July 1, 2016, issue of the journal Science.
Related Links:
Karolinska Institutet
Royal Institute of Technology
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more






 Analyzer.jpg)
