Blood Test Can Accurately Detect Alzheimer's Disease
|
By LabMedica International staff writers Posted on 01 Nov 2015 |

Image: Schematic diagram of how microtubules disintegrate with Alzheimer\'s disease (Photo courtesy of US National Institute on Aging).
A blood test that can accurately detect the presence of Alzheimer's disease is being developed which would give physicians an opportunity to intervene at the earliest, most treatable stage.
As blood vessels in the brain weaken or become brittle with age, they begin to leak, which allows plasma components including brain-reactive autoantibodies into the brain. There, the autoantibodies can bind to neurons and accelerate the accumulation of β-amyloid deposits, a hallmark of Alzheimer's pathology.
Scientists at the Rowan University School of Osteopathic Medicine (Stratford, NJ, USA) have focused focuses on utilizing autoantibodies as blood-based biomarkers to accurately detect the presence of myriad diseases and pinpoint the stage to which a disease has progressed. By detecting Alzheimer's disease long before symptoms emerge, they hope those with disease-related autoantibody biomarkers will be encouraged to make beneficial lifestyle changes that may help to slow development of the disease.
All humans possess thousands of autoantibodies in their blood and these autoantibodies specifically bind to blood-borne cellular debris generated by organs and tissues all over the body. An individual's autoantibody profile is strongly influenced by age, gender and the presence of specific diseases or injuries, and diseases cause characteristic changes in autoantibody profiles that, when detected, can serve as biomarkers that reveal the presence of the disease. The blood test developed by the team has also shown promise in detecting other diseases, including Parkinson's disease, multiple sclerosis, and breast cancer.
The team developed a microarray, a slide dotted with tiny proteins that light up in reaction to certain autoantibodies, to test for very early stages of Alzheimer’s disease. To test the blood for specific autoantibodies, the investigators took a drop of blood and smeared it on a microarray, a 2.54-cm by 7.62-cm slide dotted with 23,500 tiny proteins, about a third of all proteins made in the human body. When scanned with a laser, the proteins light up in reaction to certain autoantibodies. The brighter the color, the more of that autoantibody is present.
Robert Nagele, PhD, the senior author of the study said, “There are significant benefits to early disease detection because we now know that many of the same conditions that lead to vascular disease are also significant risk factors for Alzheimer's. People found to have preclinical disease can take steps to improve their vascular health, including watching their diet, exercising and managing any weight and blood pressure issues to help stave off or slow disease progression.” The study was presented at the Osteopathic Medical Conference & Exposition, held October 17–21, 2015, in Orlando (FL, USA).
Related Links:
Rowan University School of Osteopathic Medicine
As blood vessels in the brain weaken or become brittle with age, they begin to leak, which allows plasma components including brain-reactive autoantibodies into the brain. There, the autoantibodies can bind to neurons and accelerate the accumulation of β-amyloid deposits, a hallmark of Alzheimer's pathology.
Scientists at the Rowan University School of Osteopathic Medicine (Stratford, NJ, USA) have focused focuses on utilizing autoantibodies as blood-based biomarkers to accurately detect the presence of myriad diseases and pinpoint the stage to which a disease has progressed. By detecting Alzheimer's disease long before symptoms emerge, they hope those with disease-related autoantibody biomarkers will be encouraged to make beneficial lifestyle changes that may help to slow development of the disease.
All humans possess thousands of autoantibodies in their blood and these autoantibodies specifically bind to blood-borne cellular debris generated by organs and tissues all over the body. An individual's autoantibody profile is strongly influenced by age, gender and the presence of specific diseases or injuries, and diseases cause characteristic changes in autoantibody profiles that, when detected, can serve as biomarkers that reveal the presence of the disease. The blood test developed by the team has also shown promise in detecting other diseases, including Parkinson's disease, multiple sclerosis, and breast cancer.
The team developed a microarray, a slide dotted with tiny proteins that light up in reaction to certain autoantibodies, to test for very early stages of Alzheimer’s disease. To test the blood for specific autoantibodies, the investigators took a drop of blood and smeared it on a microarray, a 2.54-cm by 7.62-cm slide dotted with 23,500 tiny proteins, about a third of all proteins made in the human body. When scanned with a laser, the proteins light up in reaction to certain autoantibodies. The brighter the color, the more of that autoantibody is present.
Robert Nagele, PhD, the senior author of the study said, “There are significant benefits to early disease detection because we now know that many of the same conditions that lead to vascular disease are also significant risk factors for Alzheimer's. People found to have preclinical disease can take steps to improve their vascular health, including watching their diet, exercising and managing any weight and blood pressure issues to help stave off or slow disease progression.” The study was presented at the Osteopathic Medical Conference & Exposition, held October 17–21, 2015, in Orlando (FL, USA).
Related Links:
Rowan University School of Osteopathic Medicine
Latest Immunology News
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
- Companion Diagnostic Test for CRC Patients Identifies Eligible Treatment Population
- Novel Tool Uses Deep Learning for Precision Cancer Therapy
- Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
- Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
- Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
- Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
- Novel Gene Signature Predicts Immunotherapy Response in Advanced Kidney Cancers
- New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response
- AI Model Accurately Predicts MSI Tumor and Immune Checkpoint Inhibitor Responsiveness
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Pneumonia continues to be one of the leading causes of death in low- and middle-income countries, where limited access to advanced laboratory infrastructure hampers early and accurate diagnosis.... Read more
Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
Early diagnosis of Parkinson’s disease remains one of the greatest challenges in neurology. The condition, which affects nearly 12 million people globally, is typically identified only after significant... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








