New Light Shed on the Cause of Chronic Fatigue Syndrome
By LabMedica International staff writers Posted on 27 May 2015 |

Image: The MassARRAY mass spectrometer (Photo courtesy of Agena Bioscience).
The transient receptor potential (TRP) superfamily in humans comprises 27 cation channels with permeability to monovalent and divalent cations and these channels are widely expressed within humans on cells and tissues and have significant sensory and regulatory roles on most physiological functions.
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a highly debilitating disorder characterized by profound fatigue, muscle and joint pain, cerebral symptoms of impaired memory and concentration, impaired cardiovascular function, gut disorder and sensory dysfunction such as noise intolerance and balance disturbance.
Scientists at Griffith University (Gold Coast, QLD, Australia) and their colleagues recruited 115 CFS patients and 90 non-fatigued controls. Of the115 CFS patients (mean age: 48.7 ± 1.1 years), 84 (73.04%) were women and 31 (26.96%) were men. The 90 non-fatigued controls (mean age: 46.5 ± 1.2 years) comprised 59 (65.56%) women and 31 (34.44%) men. Ten milliliters of whole blood samples were collected from all participants in to ethylenediaminetetraacetic acid tubes.
Genomic DNA was extracted from all whole blood samples using the Qiagen DNA blood mini-kit (Qiagen; Venlo, Netherlands). The Nanodrop (Nanodrop; Wilmington, DE, USA) was used to assess the quality and quantity of the DNA extracted. Approximately 2 μg of genomic DNA was used in the single nuclear polymorphisms (SNP) assay. SNP analysis was performed using the MassARRAY iPLEX Gold Assay and following the iPLEX Gold reaction, MassARRAY was performed using the MassARRAY mass spectrometer, (Agena Bioscience; San Diego, CA, USA).
Of the 240 SNPs that were examined in the study, 233 were successfully identified in both participants groups and 13 were observed to be significantly associated with CFS. Nine of these SNPs were associated with transient receptor potential melostatin (TRPM3) while the remaining SNPs were associated with TRPA1 (ankyrin) and TRPC4 (canonical).
Pete Smith, MBBS, FRACP, PhD, a professor of immunology and a coauthor of the study said, “Important signaling mechanisms are disrupted as a result of these genetic changes involving the detection and response to threats. These are primitive genes that are involved in many cellular signals in the brain, gut, cardiovascular and immune systems, as well as in the mediation of pain.” The study was published on May 10, 2015, in the journal Immunology and Immunogenetics Insights.
Related Links:
Griffith University
Qiagen
Agena Bioscience
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a highly debilitating disorder characterized by profound fatigue, muscle and joint pain, cerebral symptoms of impaired memory and concentration, impaired cardiovascular function, gut disorder and sensory dysfunction such as noise intolerance and balance disturbance.
Scientists at Griffith University (Gold Coast, QLD, Australia) and their colleagues recruited 115 CFS patients and 90 non-fatigued controls. Of the115 CFS patients (mean age: 48.7 ± 1.1 years), 84 (73.04%) were women and 31 (26.96%) were men. The 90 non-fatigued controls (mean age: 46.5 ± 1.2 years) comprised 59 (65.56%) women and 31 (34.44%) men. Ten milliliters of whole blood samples were collected from all participants in to ethylenediaminetetraacetic acid tubes.
Genomic DNA was extracted from all whole blood samples using the Qiagen DNA blood mini-kit (Qiagen; Venlo, Netherlands). The Nanodrop (Nanodrop; Wilmington, DE, USA) was used to assess the quality and quantity of the DNA extracted. Approximately 2 μg of genomic DNA was used in the single nuclear polymorphisms (SNP) assay. SNP analysis was performed using the MassARRAY iPLEX Gold Assay and following the iPLEX Gold reaction, MassARRAY was performed using the MassARRAY mass spectrometer, (Agena Bioscience; San Diego, CA, USA).
Of the 240 SNPs that were examined in the study, 233 were successfully identified in both participants groups and 13 were observed to be significantly associated with CFS. Nine of these SNPs were associated with transient receptor potential melostatin (TRPM3) while the remaining SNPs were associated with TRPA1 (ankyrin) and TRPC4 (canonical).
Pete Smith, MBBS, FRACP, PhD, a professor of immunology and a coauthor of the study said, “Important signaling mechanisms are disrupted as a result of these genetic changes involving the detection and response to threats. These are primitive genes that are involved in many cellular signals in the brain, gut, cardiovascular and immune systems, as well as in the mediation of pain.” The study was published on May 10, 2015, in the journal Immunology and Immunogenetics Insights.
Related Links:
Griffith University
Qiagen
Agena Bioscience
Latest Molecular Diagnostics News
- Newly-Cleared Technology a Game Changer for Diagnosis of Lyme Disease
- Innovative Liquid Biopsy Test Uses RNA to Detect Early-Stage Cancer
- Rapid Tests for Chagas Disease Improves Diagnostic Access
- Simple Blood Test to Predict Alzheimer’s Clinical Progression in Earliest Stages
- Saliva Test Could Identify People Genetically Susceptible to Type 2 Diabetes
- Pioneering Analyzer with Advanced Biochip Technology Sets New Standard in Lab Diagnostics
- RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
- New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
- Injury Molecular Fingerprint Enables Real-Time Diagnostics for On-Site Treatment
- Blood Test Could Predict Likelihood of Breast Cancer Spreading to The Bone
- New Infectious Disease Analytics Platform Speeds Up Clinical Decision-Making at POC
- Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
- Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
- Genomic Testing in NICU Reduces Missed Diagnoses
- New Genetic Test Improves Diabetes Prediction and Classification
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
Newly-Cleared Technology a Game Changer for Diagnosis of Lyme Disease
Lyme disease is one of the fastest-growing infectious diseases, with approximately 476,000 cases diagnosed annually in the United States. The symptoms of Lyme disease, such as fever, headache, fatigue,... Read more
Innovative Liquid Biopsy Test Uses RNA to Detect Early-Stage Cancer
Detecting and diagnosing cancer, particularly in its early stages, remains a significant challenge. Liquid biopsies offer a promising non-invasive alternative to traditional biopsies, which require removing... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Low-Cost Biosensing Technology Detects Disease Biomarkers in Minutes
Rapid at-home tests for diseases like COVID-19 have become increasingly popular for their convenience, but they come with a major drawback: they are less sensitive than the tests performed in medical settings.... Read more
AI Tool Could Help Identify Specific Gut Bacterial Targets for Treatment of Diseases
The human body hosts trillions of bacteria, particularly in the gut, which have a significant role in digestion and various other aspects of health. These gut bacteria produce a variety of metabolites... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more