We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Breakthrough DNA Analysis Technology to Hasten Problem Diagnosis

By LabMedica International staff writers
Posted on 25 Aug 2014
Print article
Image: A technical breakthrough for DNA imaging has been achieved that should quicken diagnosis of diseases for which analysis of DNA from single-cells is critical, such as early stage cancers and various pre-natal conditions (Photo courtesy of McGill University and Génome Québec Innovation Center).
Image: A technical breakthrough for DNA imaging has been achieved that should quicken diagnosis of diseases for which analysis of DNA from single-cells is critical, such as early stage cancers and various pre-natal conditions (Photo courtesy of McGill University and Génome Québec Innovation Center).
Researchers have achieved a technical breakthrough that should result in speedier diagnosis of diseases for which analysis of DNA from single-cells is critical, such as early stage cancers and various prenatal conditions.

The key discovery lies in a new tool developed by a team led by Sabrina Leslie and Walter Reisner, both professors of physics at McGill University (Montreal, QC, Canada), and their collaborator Dr. Rob Sladek of the McGill University & Génome Québec Innovation Center (MUGQ Innovation Center; Montreal, Quebec, Canada). The tool enables the loading of long strands of DNA into a tunable nanoscale imaging chamber in ways that maintain structural identity and conditions similar to their in vivo physiology. This breakthrough method – “Convex Lens-Induced Confinement” (CLIC) (also referred to as convex lens-induced nanoscale templating (CLINT)) – will permit a rapid imaging-based mapping of large genomes while simultaneously identifying specific gene sequences from single cells with single-molecule resolution, a process critical to diagnosing certain types of diseases.

Existing tools used for single-cell genomic analysis rely on side-loading DNA and under pressure into nanochannels in the imaging chamber, a practice that breaks the DNA molecules into small pieces, making it a challenge to later reconstruct the genome. The CLIC tool can be set on top of a standard inverted fluorescence microscope and its innovative aspect lies in the fact that it allows strands of DNA to be loaded into the imaging chamber – from above – and in a process that allows the strands of DNA to maintain their integrity.

“It’s like squeezing many soft spaghetti noodles into long narrow tubes without breaking them,” explains Prof. Leslie, “Once these long strands of DNA are gently squeezed down into nanochannels from a nanoscale bath above, they become effectively rigid which means that we can map positions along uniformly stretched strands of DNA, while holding them still. This means diagnostics can be performed quickly, one cell at a time, which is critical for diagnosing many prenatal conditions and the onset of cancer.”

“Current practices of genomic analysis typically require tens of thousands of cells worth of genomic material to obtain the information we need, but this new approach works with single cells,” said Dr. Sladek, “CLIC will allow researchers to avoid having to spend time stitching together maps of entire genomes as we do under current techniques, and promises to make genomic analysis a much simpler and more efficient process.”

“Nanoscale physics has so much to offer biomedicine and diagnostics,” added Prof. Leslie, “CLIC brings the nanoscale regime to the bench top, and genomics is just the beginning”.

The work was described by Berarda DJ et al. in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), August 4, 2014, online ahead of print.

Related Links:

McGill University
The McGill University and Génome Québec Innovation Center


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
3-Position Stirrer
ST-200 and SHP-200 Series
New
QC Software Solution
Unity Interlaboratory Program

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Microbiology

view channel
Image: The study identified a genetic signature in bacteria that, when present, indicates the likelihood of developing antibiotic resistance (Photo courtesy of Tulane University)

Unique Genetic Signature Predicts Drug Resistance in Bacteria

Antibiotic resistance represents a significant global health threat, responsible for over a million deaths each year. By 2050, the World Health Organization predicts that it could surpass cancer and heart... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Sekisui Diagnostics UK Ltd.