LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Small RNAs in Blood May Reveal Heart Injury

By LabMedica International staff writers
Posted on 14 Aug 2014
Image: The NanoDrop 2000 Spectrophotometer (Photo courtesy of Thermo Scientific).
Image: The NanoDrop 2000 Spectrophotometer (Photo courtesy of Thermo Scientific).
An increase in certain micro ribonucleic acids (RNAs) circulating in the blood are linked with injury to cardiac muscle and these molecules might provide the basis for a more sensitive diagnostic tool than those currently available.

These small RNA molecules are encoded in the genome, and they fine-tune the expression of genes in the cells that produce them, in addition they also become evident in the blood stream, outside the protective environment of the cell, but at extremely low levels.

Scientists at The Rockefeller University (New York, NY, USA) isolated RNA from left ventricular tissue samples from a total of 47 subjects: 21 patients with advanced heart failure (HF) due to dilated cardiomyopathy (DCM), 13 patients with advanced HF due to ischemic cardiomyopathy (ICM), 8 individuals without heart disease (NFs), and 5 fetuses (FETs). They compared their microRNA results with those of the protein cardiac troponin currently used to diagnose injury to heart muscle. This protein occurs within healthy heart muscle cells, but when injured, these cells leak cardiac troponin out into the blood stream, causing its levels to spike in circulation.

The RNA concentration and purity was determined by NanoDrop micro-volume UV- spectrophotometry (Thermo Scientific; Waltham, MA, USA) or using the fluorometric Molecular Probes Qubit RNA Assay (Life Technologies; Carlsbad, CA, USA). The RNA integrity of the tissue RNA samples was determined by a microchip based capillary electrophoresis (Agilent Bioanalyzer 2100; Santa Clara, CA, USA). Cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP) were both measured by a chemiluminescent microparticle immunoassay performed for quantitative determination of BNP in plasma or cTnI in serum using the ARCHITECT iSystem (Abbott; Abbott Park, IL, USA).

The circulating small RNA profile was dominated by microRNAs, and fragments of transfer RNAs (tRNAs) and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced HF, which coincided with a similar increase in cardiac troponin I (cTnI) protein, the established marker for heart injury. In stable HF, circulating miRNAs showed less than a five-fold difference compared with normal, and myomir and cTnI levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury, performing similar to established diagnostic protein biomarkers.

Thomas Tuschl, PhD, the lead author of the study said, “RNA sequencing can capture a wide spectrum of microRNAs and other potentially interesting RNA molecules from a tiny sample. This opens the possibility of finding many promising biomarkers like those we found from heart muscle, leading to a more universal test then the current monitoring of single proteins. Some technological barriers must still be overcome before tests based on RNA biomarkers like these can be brought into the clinic, but the potential is there for an entirely new type of clinically important diagnostic tool.” The study was published on July 29, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

The Rockefeller University
Thermo Scientific
Life Technologies



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Clinical Chemistry System
P780

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more