We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sensitivity of White Blood Cell DNA to Damage from UV Light Distinguishes Cancer Patients from Healthy Individuals

By LabMedica International staff writers
Posted on 13 Aug 2014
Print article
Image: The single cell gel electrophoresis assay or “comet” test (Photo courtesy of the Belgian BioElectroMagnetics Group).
Image: The single cell gel electrophoresis assay or “comet” test (Photo courtesy of the Belgian BioElectroMagnetics Group).
A simple test that measures the extent of damage to white blood cell DNA caused by exposure to ultraviolet light has the potential to detect individuals with cancer before the appearance of any detectable symptoms.

Investigators at the University of Bradford (United Kingdom) recently described the Lymphocyte Genome Sensitivity (LGS) test that they had developed. This test, which is based on "comet assay" technology, evaluates the damage caused to white blood cell DNA by exposure to different intensities of ultraviolet light (UVA).

The comet assay (single-cell gel electrophoresis) is a simple method for measuring DNA strand breaks in eukaryotic cells. Cells embedded in agarose on a microscope slide are dissolved with detergent and a high salt concentration to form nucleoids containing supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis under alkaline conditions results in structures resembling comets, observed by fluorescence microscopy, with the intensity of the comet tail relative to the head reflecting the number of DNA breaks. Determine of the extent of DNA damage is obtained from visual analysis after DNA staining and calculation of fluorescence, which can be performed by manual scoring or automatically by imaging software.

For their study, the investigators looked at lymphocyte responses from 208 individuals: 20 with melanoma, 34 with colon cancer, four with lung cancer, 18 with suspected melanoma, 28 with polyposis, 10 with COPD (chronic obstructive pulmonary disease), and 94 healthy volunteers. Random and anonymous white blood cell samples were exposed to UVA light through five different depths of agar and then analyzed by the comet assay.

Results revealed that damage to DNA in white blood cells from cancer patients reached a stable plateau after treatment with different UVA intensities. In contrast the response of white blood cells from healthy individuals returned to control values.

Dr. Diana Anderson, professor of life sciences at the University of Bradford, said, “White blood cells are part of the body’s natural defense system. We know that they are under stress when they are fighting cancer or other diseases, so I wondered whether anything measurable could be seen if we put them under further stress with UVA light. We found that people with cancer have DNA which is more easily damaged by ultraviolet light than other people, so the test shows the sensitivity to damage of all the DNA—the genome—in a cell.”

“These are early results completed on three different types of cancer, and we accept that more research needs to be done; but these results so far are remarkable,” said Dr. Anderson. "Whilst the numbers of people we tested are, in epidemiological terms, quite small, in molecular epidemiological terms, the results are powerful. We have identified significant differences between the healthy volunteers, suspected cancer patients, and confirmed cancer patients of mixed ages at a statistically significant level. We believe that this confirms the test’s potential as a diagnostic tool.”

The study was published in the July 25, 2014, online edition of FASEB Journal.

Related Links:
University of Bradford


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
PSA Test
Humasis PSA Card
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more