We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarkers Identified for Type 2 Diabetes

By LabMedica International staff writers
Posted on 24 Oct 2012
Print article
Novel biomarkers have been identified for type 2 diabetes that can serve as basis for developing new methods of treatment and prevention of this metabolic disease.

Metabolites in the blood have been characterized that will provide insight into the pathological mechanisms of type 2 diabetes and in addition can be used as biomarkers to determine the disease risk.

A scientific team at the German Institute of Human Nutrition (Potsdam-Rehbruecke, Germany) and the Max Delbrueck Center for Molecular Medicine (Berlin, Germany) studied 4,000 blood samples. At the time the blood sample was taken, none of the study participants suffered from type 2 diabetes. However, during the average follow-up time of seven years, 891 participants were diagnosed with type 2 diabetes. There were 76 participants in the study who were already classified at the beginning of the study as individuals at high risk for type 2 diabetes, but at the time the blood sample was taken, they were still healthy.

Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites per blood sample, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of type 2 diabetes. Serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 were associated with decreased risk.

The metabolites significantly improved type 2 diabetes prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in one study group and were partly replicated in the independent cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of type 2 diabetes.

Tobias Pischon, MD MPH, the lead author, said “At the same time the metabolites can also be used as biomarkers to precisely determine the risk of diabetes at a very early stage, since the study is based on prospective data, which is data that were collected before the onset of the disease. The results of the new metabolomic analysis thus provide a good basis for developing new treatment and prevention methods." The study was published on October 4, 2012, in the journal Diabetes.

Related Links:

German Institute of Human Nutrition
Max Delbrueck Center for Molecular Medicine


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Sekisui Diagnostics UK Ltd.