Gamers Succeed Where Scientists Fail in Uncovering Enzyme Structures
|
By LabMedica International staff writers Posted on 27 Sep 2011 |
Video gamers have solved the structure of a retrovirus enzyme whose configuration had bewildered scientists for more than 10 years. The gamers achieved their discovery by playing Foldit, an online “game” that allows players to collaborate and compete in predicting the structure of protein molecules.
After scientists repeatedly were unsuccessful in piecing together the structure of a protein-cutting enzyme from an AIDS-like virus, they brought in the Foldit players. The scientists challenged the gamers to produce an accurate model of the enzyme. They did it in only three weeks.
This class of enzymes, called retroviral proteases, has a key role in how the AIDS virus matures, and proliferates. Intensive research is ongoing to try to find anti-AIDS drugs that can block these enzymes, but efforts were hampered by not knowing exactly what the retroviral protease molecule looks like. “We wanted to see if human intuition could succeed where automated methods had failed,” said Dr. Firas Khatib of the University of Washington (UW; Seattle, USA) department of biochemistry. Dr. Khatib is a researcher in the protein structure lab of Dr. David Baker, professor of biochemistry.
Amazingly, the gamers constructed models good enough for the researchers to modify, and within several days, determine the enzyme’s structure. Equally remarkable, surfaces on the molecule stood out as likely targets for drugs to de-active the enzyme. “These features provide exciting opportunities for the design of retroviral drugs, including AIDS drugs,” wrote the authors of an article appearing September 18, 2008, in the journal Nature Structural & Molecular Biology. The scientists and gamers are listed as coauthors.
This is the first instance that the researchers are aware of in which gamers solved a longstanding scientific problem. Fold-it was created by computer scientists at the University of Washington Center for Game Science in collaboration with the Baker lab. “The focus of the UW Center for Game Sciences,” said director Dr. Zoran Popovic, associate professor of computer science and engineering, “is to solve hard problems in science and education that currently cannot be solved by either people or computers alone.”
The solution of the virus enzyme structure, the researchers said, “indicates the power of online computer games to channel human intuition and three-dimensional pattern matching skills to solve challenging scientific problems.”
With names like Foldit Contenders Group and Foldit Void Crushers Group, the gamer teams were fired up for the task of real-world molecule modeling problems. The online protein folding game captivates thousands of avid players worldwide and engages the general public in scientific discovery.
Players come from all walks of life. The game taps into their three-dimensional (3D) spatial abilities to rotate chains of amino acids in cyberspace. New players begin at the basic level, “One Small Clash,” proceed to “Swing it Around,” and step ahead until reaching “Rubber Band Reversal.”
Direct manipulation tools, as well as assistance from a computer program called Rosetta, encourage participants to configure graphics into a workable protein model. Teams send in their answers, and UW researchers constantly improve the design of the game and its puzzles by analyzing the players’ problem-solving strategies. Determining the shape and misshape of proteins contributes to research on causes of and cures for cancer, Alzheimer’s, immune deficiencies, and a host of other disorders, as well as to environmental work on biofuels.
Referring to this report of the online gamers’ molecule solution opening new avenues for antiviral drug research, Carter Kimsey, program director, National Science Foundation Division of Biological Infrastructure, observed, “After this discovery, young people might not mind doing their science homework. This is an innovative approach to getting humans and computer models to ‘learn from each other’ in real-time.”
The researchers noted that much attention has been given to the possibilities of crowd-sourcing and game playing in scientific discovery. Their results indicate the potential for integrating online video games into real-world science.
Dr. Seth Cooper, of the UW department of computing science and engineering, is a cocreator of Foldit and its lead designer and developer. He studies human-computer exploration techniques and the coevolution of games and players. “People have spatial reasoning skills, something computers are not yet good at,” Dr. Cooper said. “Games provide a framework for bringing together the strengths of computers and humans. The results in this article show that gaming, science, and computation can be combined to make advances that were not possible before.”
Games such as Foldit are evolving. To piece together the retrovirus enzyme structure, Cooper said, gamers used a new Alignment Tool for the first time to copy parts of know molecules and test their fit in an incomplete model. “The ingenuity of game players,” Dr. Khatib concluded, “is a formidable force that, if properly directed, can be used to solve a wide range of scientific problems.”
According to Dr. Popovic, “Foldit shows that a game can turn novices into domain experts capable of producing first-class scientific discoveries. We are currently applying the same approach to change the way math and science are taught in school.”
Related Links:
University of Washington
After scientists repeatedly were unsuccessful in piecing together the structure of a protein-cutting enzyme from an AIDS-like virus, they brought in the Foldit players. The scientists challenged the gamers to produce an accurate model of the enzyme. They did it in only three weeks.
This class of enzymes, called retroviral proteases, has a key role in how the AIDS virus matures, and proliferates. Intensive research is ongoing to try to find anti-AIDS drugs that can block these enzymes, but efforts were hampered by not knowing exactly what the retroviral protease molecule looks like. “We wanted to see if human intuition could succeed where automated methods had failed,” said Dr. Firas Khatib of the University of Washington (UW; Seattle, USA) department of biochemistry. Dr. Khatib is a researcher in the protein structure lab of Dr. David Baker, professor of biochemistry.
Amazingly, the gamers constructed models good enough for the researchers to modify, and within several days, determine the enzyme’s structure. Equally remarkable, surfaces on the molecule stood out as likely targets for drugs to de-active the enzyme. “These features provide exciting opportunities for the design of retroviral drugs, including AIDS drugs,” wrote the authors of an article appearing September 18, 2008, in the journal Nature Structural & Molecular Biology. The scientists and gamers are listed as coauthors.
This is the first instance that the researchers are aware of in which gamers solved a longstanding scientific problem. Fold-it was created by computer scientists at the University of Washington Center for Game Science in collaboration with the Baker lab. “The focus of the UW Center for Game Sciences,” said director Dr. Zoran Popovic, associate professor of computer science and engineering, “is to solve hard problems in science and education that currently cannot be solved by either people or computers alone.”
The solution of the virus enzyme structure, the researchers said, “indicates the power of online computer games to channel human intuition and three-dimensional pattern matching skills to solve challenging scientific problems.”
With names like Foldit Contenders Group and Foldit Void Crushers Group, the gamer teams were fired up for the task of real-world molecule modeling problems. The online protein folding game captivates thousands of avid players worldwide and engages the general public in scientific discovery.
Players come from all walks of life. The game taps into their three-dimensional (3D) spatial abilities to rotate chains of amino acids in cyberspace. New players begin at the basic level, “One Small Clash,” proceed to “Swing it Around,” and step ahead until reaching “Rubber Band Reversal.”
Direct manipulation tools, as well as assistance from a computer program called Rosetta, encourage participants to configure graphics into a workable protein model. Teams send in their answers, and UW researchers constantly improve the design of the game and its puzzles by analyzing the players’ problem-solving strategies. Determining the shape and misshape of proteins contributes to research on causes of and cures for cancer, Alzheimer’s, immune deficiencies, and a host of other disorders, as well as to environmental work on biofuels.
Referring to this report of the online gamers’ molecule solution opening new avenues for antiviral drug research, Carter Kimsey, program director, National Science Foundation Division of Biological Infrastructure, observed, “After this discovery, young people might not mind doing their science homework. This is an innovative approach to getting humans and computer models to ‘learn from each other’ in real-time.”
The researchers noted that much attention has been given to the possibilities of crowd-sourcing and game playing in scientific discovery. Their results indicate the potential for integrating online video games into real-world science.
Dr. Seth Cooper, of the UW department of computing science and engineering, is a cocreator of Foldit and its lead designer and developer. He studies human-computer exploration techniques and the coevolution of games and players. “People have spatial reasoning skills, something computers are not yet good at,” Dr. Cooper said. “Games provide a framework for bringing together the strengths of computers and humans. The results in this article show that gaming, science, and computation can be combined to make advances that were not possible before.”
Games such as Foldit are evolving. To piece together the retrovirus enzyme structure, Cooper said, gamers used a new Alignment Tool for the first time to copy parts of know molecules and test their fit in an incomplete model. “The ingenuity of game players,” Dr. Khatib concluded, “is a formidable force that, if properly directed, can be used to solve a wide range of scientific problems.”
According to Dr. Popovic, “Foldit shows that a game can turn novices into domain experts capable of producing first-class scientific discoveries. We are currently applying the same approach to change the way math and science are taught in school.”
Related Links:
University of Washington
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







