We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Blood Test Detects Damaged Cardiac Muscle

By LabMedica International staff writers
Posted on 05 May 2011
Print article
A microwave-accelerated and metal-enhanced fluorescence (MA-MEF) technique was used to detect the protein troponin I (TnI), a specific indicator of damage to the heart muscles.

The technique is based on the combined use of low-power microwave heating, silver nanoparticle films (SNFs), and fluorescence spectroscopy for the detection of TnI from human whole blood samples.

The silver nanoparticles were deposited onto amine-modified glass microscope slides by use of Tollen's reaction scheme and characterized by optical absorption spectroscopy and scanning electron microscopy. The detection of TnI from buffer solutions and human whole blood samples on SNFs was carried out by using fluorescence-based immunoassays at room temperature. A control immunoassay, which took two hours total assay time, was compared with the microwave heating MA-MEF–based immunoassay, which took one minute total assay time.

Scientists at Morgan State University (Baltimore, MD, USA) found that the lower limits of detection for TnI from buffer solutions in the control immunoassay and MA-MEF–based immunoassay were 0.1 µg/L and 0.005 µg/L, respectively. However, they were unable to detect TnI in whole blood samples in the control immunoassay owing to the coagulation of whole blood within five minutes of the incubation step. The use of the MA-MEF technique allowed detection of TnI from whole blood samples in one minute with a lower detection limit of 0.05 µg/L.

The authors concluded that the MA-MEF–based immunoassay is one of the fastest reported quantitative detection methods for detection of TnI in human whole blood and has low detection limits similar to those obtained with commercially available immunoassays. Troponins are measured in the blood to differentiate between unstable angina and myocardial infarction in patients with chest pain or acute coronary syndrome. A patient who had suffered from a myocardial infarction would have an area of damaged heart muscle and so would have elevated cardiac troponin levels in the blood. The study was published online on March 11, 2011, in Clinical Chemistry.

Related Links:
Morgan State University



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Sekisui Diagnostics UK Ltd.