LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Serum and Plasma Choline Quantified by Clinical NMR- Analyzer

By LabMedica International staff writers
Posted on 14 Dec 2021
Print article
Image: The Vantera Clinical Analyzer can identify and quantify concentrations of choline using NMR spectroscopy (Photo courtesy of American Association for Clinical Chemistry)
Image: The Vantera Clinical Analyzer can identify and quantify concentrations of choline using NMR spectroscopy (Photo courtesy of American Association for Clinical Chemistry)
Gut microbiome-related metabolites, like trimethylamine-N-oxide (TMAO), betaine and choline are increasingly recognized as contributors to, as well as markers of, cardiometabolic and other chronic diseases. Gut microbiome mediated metabolism of phosphatidylcholine leads to the production of choline, which is then metabolized to either trimethylamine (TMA) or betaine.

Choline is important because it is a component of membrane phospholipids including phosphatidylcholine, the most abundant phospholipid in humans. Choline is also needed for methyl group metabolism, cholinergic neurotransmission as well as lipid and cholesterol transport and metabolism. A high-throughput nuclear magnetic resonance (NMR)–based assay to measure choline has been developed.

Scientists from the Laboratory Corporation of America Holdings (Morrisville, NC, USA) pooled de-identified residual clinical specimens that were pooled to enable the analytical validation studies. In addition, blood draws were performed when appropriate de-identified specimens were not available. Serum or plasma specimens were diluted on board the Vantera Clinical Analyzer (LipoScience Inc, Raleigh, NC, USA) with citrate/phosphate buffer to lower the pH to 5.3. Choline was quantified from the processed spectra using a proprietary multi-step deconvolution algorithm that resolves the choline region into its spectral components. A method comparison study was performed to compare choline concentrations determined by both NMR and liquid chromatography tandem mass spectrometry (LC-MS/MS), 1290 UHPLC system coupled to a 6495B QQQ mass spectrometer (Agilent Technologies, Santa Clara, CA, USA).

The investigators reported that Deming regression analysis comparing choline concentrations by NMR and mass spectrometry (n=28) exhibited a correlation coefficient of 0.998. The limit of quantification were determined to be 7.1 µmol/L in serum and 5.9 µmol/L in plasma. The coefficients of variation (%CV) for intra- and inter-assay precision ranged from 6.2–14.8% (serum) and 5.4–11.3% (plasma). Choline concentrations were lower in EDTA plasma by as much as 38% compared to serum, however, choline was less stable in serum compared to plasma. In a population of apparently healthy adults, the reference interval was <7.1–20.0 µmol/L (serum) and <5.9–13.1 µmol/L (plasma). Linearity was demonstrated well beyond these intervals. No interference was observed for a number of substances tested.

The authors concluded that the newly developed NMR-based assay exhibited good performance characteristics enabling high-throughput quantification of circulating choline for clinical use. While lower choline concentrations were observed in plasma compared to serum, choline was more stable in plasma. The study was published on December 4, 2021 in the journal Clinica Chimica Acta.

Related Links:
Laboratory Corporation of America Holdings
LipoScience Inc
Agilent Technologies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more