We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

MicroRNA Biomarker Distinguishes Growth of Aggressive Prostate Tumors

By LabMedica International staff writers
Posted on 08 Jul 2019
Print article
Image: The serum prostate cancer biomarker prostate-specific antigen (PSA) (Photo courtesy of Wikimedia Commons).
Image: The serum prostate cancer biomarker prostate-specific antigen (PSA) (Photo courtesy of Wikimedia Commons).
A microRNA biomarker found in the urine of men with prostate cancer can distinguish slow growing cancers from potentially life-threatening aggressive tumors.

Current screening tools, including biopsy and blood screening for prostate specific antigen (PSA), are not able to differentiate between the 25% to 40% of patients with slow growing clinically insignificant disease, and the 20% to 35% of patients with aggressive prostate cancer who may not receive appropriate treatment.

Investigators at the University of California, Los Angeles (USA) and collaborators at the University of Toronto (Canada) sought to develop a non-invasive test for the early detection of aggressive prostate tumors and hypothesized that miRNAs in the urine might prove to be appropriate biomarkers for this purpose.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. Furthermore, miRNAs play essential roles in tumor development, are stable under diverse analytical conditions, and can be readily detected in body fluids.

For this study, the investigators measured the longitudinal stability of 673 miRNAs collected from serial urine samples from 10 patients with localized prostate cancer. They then measured temporally stable miRNAs in an independent training cohort and created a biomarker predictive of Gleason grade using machine-learning techniques. Finally, they validated this biomarker in an independent validation cohort.

Results revealed that each individual had a specific urine miRNA fingerprint. These fingerprints were temporally stable, and associated with specific biological functions. Seven miRNAs were identified that were stable over time within individual patients, and these were combined with machine-learning techniques to create a novel biomarker for prostate cancer that overcame inter-individual variability. This urine biomarker robustly identified high-risk patients and achieved similar accuracy as tissue-based diagnostic markers.

"We developed a three-stage experimental strategy that would maximize statistical and data science considerations to give us the best chance of finding a biomarker to predict prostate cancer aggressiveness," said senior author Dr. Paul Boutros, professor of urology and human genetics at the University of California, Los Angeles. "What this test does is gives the clinician, the patient, and their caregivers confidence in their treatment plan."

The study was published in the June 4, 2019, online edition of the Journal of the National Cancer Institute.

Related Links:
University of California, Los Angeles
University of Toronto

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more