We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Modified Platelets Reduce Risk of Blood Clots and Prevent Metastasis

By LabMedica International staff writers
Posted on 27 Feb 2019
Print article
Image: Platelet decoys (pink), unlike normal platelets, are not activated by collagen fibers (gray), making them an attractive option for antithrombotic and cancer treatment (Photo courtesy of Harvard University).
Image: Platelet decoys (pink), unlike normal platelets, are not activated by collagen fibers (gray), making them an attractive option for antithrombotic and cancer treatment (Photo courtesy of Harvard University).
A promising method for reducing the risk of blood clots and preventing tumor metastasis is based on treatment with blood platelets that have been modified to be incapable of activation and aggregation while retaining their functional binding properties.

Platelets are crucial for normal clotting of the blood; however, their hyperactivation also contributes to many potentially lethal conditions including myocardial infarction, stroke, and cancer. For this reason, investigators at Harvard University (Boston, MA, USA) hypothesized that modified platelets lacking their aggregation and activation capacity could act as reversible inhibitors of platelet activation cascades.

To examine this possibility, the investigators prepared platelet "decoys" via a process of detergent treatment and centrifugation, which stripped the platelets of their inner structures and removed their basic activation and aggregation abilities. These decoy platelets were about one-third the size of regular platelets and retained a majority of adhesion receptors on their surface.

The investigators reported in the February 13, 2019, online edition of the journal Science Translational Medicine that platelet decoys inhibited aggregation and adhesion of platelets on clot-inducing surfaces in vitro, which could be immediately reversed by the addition of normal platelets. In a rabbit model, pretreatment with platelet decoys inhibited arterial injury–induced thromboembolism. Decoys also interfered with platelet-mediated human breast cancer cell aggregation, and their presence decreased cancer cell arrest and extravasation in a microfluidic human microvasculature on a chip.

In a mouse model of metastasis, simultaneous injection of the platelet decoys with tumor cells inhibited metastatic tumor growth.

"The reversibility and immediate onset of action are major advantages of our platelet decoys, and we envision them to be useful in hospital-based situations," said first author Dr. Anne-Laure Papa, now assistant professor of biomedical engineering at George Washington University (Washington, DC, USA). "The therapy could prevent clotting in high-risk patients just before they undergo surgery, or be given to cancer patients alongside chemotherapy to prevent existing tumors from spreading. Our ability to reverse the platelet inhibiting effects with a simple reintroduction of normal platelets is very encouraging as currently available anti-platelet agents are often difficult to reverse in emergency settings such as severe bleeding."

Related Links:
Harvard University
George Washington University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more