LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Plasma Markers Predict Brain Amyloid Burden in AD

By LabMedica International staff writers
Posted on 23 Feb 2018
Print article
Image: A Matrix-Assisted Laser Desorption/Ionization (MALDI) time-of-flight mass spectrometer (Photo courtesy of JEOL).
Image: A Matrix-Assisted Laser Desorption/Ionization (MALDI) time-of-flight mass spectrometer (Photo courtesy of JEOL).
Aggregation and accumulation of beta-amyloid (Aβ), particularly Aβ42, is implicated in the pathogenesis of Alzheimer's disease (AD) with overproduction in autosomal-dominant AD and impaired clearance in the presence of amyloidosis contributing to the cause of AD.

Cerebrospinal fluid analysis and other measurements of amyloidosis, such as amyloid-binding positron emission tomography studies, are limited by cost and availability. There is a need for a more practical beta-amyloid (Aβ) biomarker for central nervous system amyloid deposition.

An international team of scientists working with the Japanese National Center for Geriatrics and Gerontology (Obu, Japan) used immunoprecipitation followed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to measure levels of the three markers, APP669-711, Aβ42, and Aβ40 in two cohorts, a discovery set consisting of 121 Japanese patients and a validation set consisting of 252 Australian patients. Both sets included a mix of cognitively normal individuals, subjects with mild cognitive impairment, and subjects with clinically diagnosed Alzheimer's disease with dementia. All patients also had Aβ- positron-emission tomography (PET) imaging data, providing an assessment of their brain Aβ burdens. A subset of the Australian patients also had measurements taken of their cerebrospinal fluid Aβ levels.

The tem tested ratios of the three markers to develop a composite blood-based marker corresponding to brain Aβ levels as assessed by PET and cerebrospinal fluid (CSF) measurements. They used ratios as opposed to absolute measurements to account for individual variation in blood Aβ42 levels across individuals. A composite of the three plasma protein ratios corresponded well with both patient Aβ42 CSF levels and brain Aβ42 levels as determined by PET. Using PET measurements as the gold standard, the investigators found their plasma measurements had comparable performance to the CSF measurements, with both showing accuracy of 80.4% and areas under the curve of 83.8% and 87.4% for the blood and CSF measurements, respectively. Using the CSF measurements as the gold standard, the composite plasma markers performed with an accuracy of 80.4% and an AUC of 87.6.

The authors concluded that their results demonstrated the potential clinical utility of plasma biomarkers in predicting brain beta-amyloid burden at an individual level. These plasma biomarkers also have cost–benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening. The study was published on January 31, 2018, in the journal Nature.

Related Links:
Japanese National Center for Geriatrics and Gerontology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more