We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Modified Adenovirus Vector Used for Cancer Gene Therapy

By LabMedica International staff writers
Posted on 15 Feb 2018
Print article
Image: An adenovirus without and with a novel protein shield. The adenovirus (left) was camouflaged from the immune system by the protective coat (right) (Photo courtesy of the University of Zurich).
Image: An adenovirus without and with a novel protein shield. The adenovirus (left) was camouflaged from the immune system by the protective coat (right) (Photo courtesy of the University of Zurich).
A team of medical virologists has modified the commonly used adenovirus vector to both avoid clearance by the immune system and liver and to specifically target and invade tumor cells.

The clinical application of most systemic viral gene therapies has been limited by the efficient neutralization of the viruses by the immune system and their rapid elimination by the liver. Furthermore, adenovirus has been of little use in the realm of cancer therapy, as this virus does not normally invade tumor cells.

Investigators at the University of Zurich (Switzerland) developed a "work-around" to empower an adenovirus vector for use as a carrier for cancer gene therapy. They engineered a high-affinity protein coat that shielded the most commonly used vector in clinical gene therapy, human adenovirus type 5. Using electron microscopy and crystallography they demonstrated a massive coverage of the virion surface through the hexon-shielding scFv fragment, which was trimerized to exploit the hexon symmetry and gain avidity. In addition, the shield reduced virion clearance in the liver.

When the shielded particles were equipped with adaptor proteins, the virions delivered their payload genes into human cancer cells expressing the HER2 or EGFR surface proteins.

The investigators further reported in the January 31, 2018, online edition of the journal Nature Communications that the combination of shield and adapter also increased viral gene delivery to xenografted tumors in vivo, reduced liver off-targeting, and minimized immune neutralization.

"With this gene shuttle, we have opened up many avenues to treat aggressive cancers in the future, since we can make the body itself produce a whole cocktail of therapeutics directly in the tumor," said senior author Dr. Andreas Plueckthun, professor of biochemistry at the University of Zurich.

Related Links:
University of Zurich

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Researchers have found a way to spot the debilitating disease Alzheimer\'s before it develops into dementia (Photo courtesy of 123RF)

Advanced Blood Test to Spot Alzheimer's Before Progression to Dementia

Alzheimer’s disease is well known for its slow development over many years, which typically leads to treatment interventions only after the disease has advanced to stages where it may be nearly impossible... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more