We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Regulatory Role of Long Non-Coding RNAs Defined

By LabMedica International staff writers
Posted on 12 Dec 2017
Print article
Image: Intermediate magnification micrograph of a low malignant potential (LMP) mucinous ovarian tumor (Photo courtesy of Wikimedia Commons).
Image: Intermediate magnification micrograph of a low malignant potential (LMP) mucinous ovarian tumor (Photo courtesy of Wikimedia Commons).
The long non-coding RNA DNM3O has been found to regulate the processes that lead to metastasis and the high mortality of ovarian cancer.

Long non-coding RNAs (lncRNAs) are considered to be non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study. Their name notwithstanding, long non-coding RNAs (lncRNAs) have been found to actually encode synthesis of small polypeptides that can fine tune the activity of critical cellular components.

This high mortality of ovarian cancer is primarily caused by resistance to therapy and the diagnosis of ovarian cancer after it has already metastasized, which occurs in approximately 80% of patients. Little is understood about the contribution of lncRNA to epithelial-to-mesenchymal transition (EMT), which correlates with metastasis.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) sought to establish a connection between lncRNAs and EMT in ovarian cancer. To this end, they performed an integrated analysis of more than 700 ovarian cancer molecular profiles, including genomic data sets, from four patient cohorts.

Results published in the November 17, 2017, online edition of the journal Nature Communications revealed a direct link between overexpression of the lncRNAs DNM3OS, MEG3, and MIAT and their reproducible gene regulation in ovarian cancer EMT. Genome-wide mapping showed 73% of MEG3-regulated EMT-linked pathway genes contained MEG3 binding sites. DNM3OS overexpression, but not MEG3 or MIAT, significantly correlated to worse overall patient survival. In contrast, DNM3OS knockdown resulted in altered EMT-linked genes/pathways, mesenchymal-to-epithelial transition, and reduced cell migration and invasion.

“Overexpression of one of the lncRNAs, DNM30S, was significantly correlated with worse overall ovarian cancer patient survival,” said senior author Dr. Christine Eischen, professor of cancer biology at Thomas Jefferson University.

Related Links:
Thomas Jefferson University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more