We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Silencing Determines Eventual Stem Cell Fate

By LabMedica International staff writers
Posted on 23 Oct 2017
Print article
Sequestration of certain portions of the genome in close proximity to the wall of the nucleus in a stem cell determines whether genes in this region (the nuclear lamina) are expressed, which controls future cellular identity and function.

Progenitor stem cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. Investigators at the University of Pennsylvania (Philadelphia, USA) worked with heart stem cells to study the mechanism that causes certain areas of the genome to become bound to the nuclear membrane and the ramifications of being bound in this location.

The investigators reported in the October 12, 2017, online edition of the journal Cell that a histone deacetylase (Hdac3) protein organized heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Hdac3 tethered peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells released genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescued myogenesis - allowing continued reproduction as stem cells - in progenitors otherwise lacking Hdac3.

This data demonstrated that nuclear lamina-chromatin interactions influenced cardiac progenitor cell differentiation. The investigators proposed that organogenesis was achieved through dynamic spatial reorganization of chromatin, including coordinated sequestration and/or release of genomic regions harboring key developmental genes from the nuclear lamina.

"The basis of this study is understanding the ability of a cell to respond to molecular cues to correctly become one cell type or another," said senior author, Dr. Rajan Jain, assistant professor of cardiovascular medicine at the University of Pennsylvania. "We wanted to know how that is achieved, step by step, because stem cells, capable of becoming any cell type in the body, give rise to cardiac muscle cells. Our work suggests that a cell defines its identity by storing away in an inaccessible closet the critical genes and programs necessary for it to mature into another cell type. In other words, a cell is "who" it is because it has silenced "who" it is not. We asked: Does this choreographed control of DNA availability contribute to a cell becoming a certain type?"

Related Links:
University of Pennsylvania

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more