We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

3D-Printed Heart Valve Models Mimic Physiology

By LabMedica International staff writers
Posted on 17 Jul 2017
Print article
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Cardiovascular disease researchers used an advanced multi-material three-dimensional printing technique to create patient-specific heart valve models that mimic the physiological qualities of human valves.

Investigators at the Georgia Institute of Technology (Atlanta, USA) had shown previously that a metamaterial three-dimensional printing technique could be used to create patient-specific phantoms that mimicked the mechanical properties of biological tissue. In the current study, they aimed to use this methodology to develop a procedure simulation platform for in vitro transcatheter aortic valve replacement (TAVR). In addition, they evaluated the feasibility of using these three-dimensional printed mimics to quantitatively predict the occurrence, severity, and location of any degree of post-TAVR paravalvular leaks (PVL).

In conducting this retrospective study involving 18 patients who had undergone TAVR, patient-specific aortic root mimics were created using the three-dimensional printing technique combined with pre-TAVR computed tomography. CoreValve (self-expanding valve) prostheses were deployed in the mimics to simulate the TAVR procedure, from which post-TAVR aortic root strain was quantified in vitro. A novel index, the annular bulge index, was measured to assess the post-TAVR annular strain unevenness in the mimics.

Results published in the July 7, 2017, online edition of the journal JACC: Cardiovascular Imaging revealed that the maximum annular bulge index was significantly different among patient subgroups that had no PVL, trace-to-mild PVL, and moderate-to-severe PVL. Compared with other known PVL predictors, bulge index was the only significant predictor of moderate-severe PVL. Thus, in this proof-of-concept study, the investigators demonstrated the feasibility of using three-dimensional printed tissue-mimics to quantitatively assess post-TAVR aortic root strain in vitro.

"These three-dimensional printed valves have the potential to make a huge impact on patient care going forward," said contributing author Dr. Chuck Zhang, professor of industrial and systems engineering at the Georgia Institute of Technology. "Previous methods of using three-dimensional printers and a single material to create human organ models were limited to the physiological properties of the material used. Our method of creating these models using metamaterial design and multi-material three-dimensional printing takes into account the mechanical behavior of the heart valves, mimicking the natural strain-stiffening behavior of soft tissues that comes from the interaction between elastin and collagen, two proteins found in heart valves."

Related Links:
Georgia Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more