We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Modulation of Redox Environment Increases Breast Cancer Aggressiveness

By Gerald M. Slutzky, PhD
Posted on 16 Nov 2016
Print article
Image: The photomicrograph shows that a less aggressive tumor turns into a more aggressive tumor when artificially made to increase its manganese superoxide dismutase (MnSOD) levels (Photo courtesy of the National University of Singapore).
Image: The photomicrograph shows that a less aggressive tumor turns into a more aggressive tumor when artificially made to increase its manganese superoxide dismutase (MnSOD) levels (Photo courtesy of the National University of Singapore).
Cancer researchers have identified an enzyme that promotes the transition of breast tissue from epithelial (non-cancerous) to mesenchymal (metastatic cancer-like) modes during the development of invasive triple negative breast cancer.

Since analysis of breast cancers in The Cancer Genome Atlas database had revealed strong positive correlation between a tumor's EMT (epithelial - mesenchymal transition) score and the expression of the manganese superoxide dismutase (MnSOD) enzyme, investigators at the National University of Singapore (Singapore) sought to assess the involvement of MnSOD during the switch between epithelial-like and mesenchymal-like phenotypes in breast carcinomas.

As a member of the iron/manganese superoxide dismutase family, this enzyme transforms toxic superoxide, a byproduct of the mitochondrial electron transport chain, into hydrogen peroxide and diatomic oxygen. This function allows SOD2 to clear mitochondrial reactive oxygen species (ROS) and, as a result, confer protection against cell death. As a result, this protein plays an anti-apoptotic and pro-carcinogenic role against oxidative stress, ionizing radiation, and inflammatory cytokines.

The investigators reported in the August 2016 issue of the journal Antioxidants & Redox Signaling that they had observed the overexpression of MnSOD in mesenchymal-like breast cancers that exhibited increased migratory, invasive, and metastatic capacities. On the other hand, repression of MnSOD induced an epithelial phenotype with a reduction in EMT markers and cells' scattering, invasive, and motile capacity.

The positive correlation between MnSOD and EMT score was significant and consistent across all breast cancer subtypes. Similarly, a positive correlation of EMT score and MnSOD expression was observed in established cell lines derived from breast cancers exhibiting phenotypes ranging from the most epithelial to the most mesenchymal.

The investigators proposed that at the mechanistic level MnSOD appeared to drive epithelial to mesenchymal transition via its ability to modulate the cellular redox environment by adjusting the ratio of superoxide to hydrogen peroxide.

"By suppressing MnSOD expression or its activity in triple negative breast cancer patients, we are able to make the tumor cells less aggressive and more sensitive to chemotherapy," said senior author Dr. Alan Prem Kumar, principal associate in the Cancer Science Institute of Singapore at the National University of Singapore.

Related Links:
National University of Singapore

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more