We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomaterial Scaffolds Boost Interleukin Production to Promote Wound Healing

By LabMedica International staff writers
Posted on 29 Apr 2016
Print article
Image: A cross-section of injured mouse muscle tissue, with healthy tissue in pink and scar tissue shown in purple. Both mice genetically lack T-cells; the mouse on the left was injected with T-cells that became type II helper T-cells and aided healing (Photo courtesy of Dr. Kenneth Estrellas, Johns Hopkins University).
Image: A cross-section of injured mouse muscle tissue, with healthy tissue in pink and scar tissue shown in purple. Both mice genetically lack T-cells; the mouse on the left was injected with T-cells that became type II helper T-cells and aided healing (Photo courtesy of Dr. Kenneth Estrellas, Johns Hopkins University).
The improved wound healing promoted by use of "biomaterial" scaffolds was shown to be due to activation of the immune system's T helper II pathway with a subsequent increase in production of interleukins.

Biomaterial scaffolds derived from cardiac muscle and bone extracellular matrix components help to guide regenerating tissue. Investigators at Johns Hopkins University (Baltimore, MD, USA) tested how such biomaterial scaffolds interact with the immune system in damaged tissue to promote repair.

They reported in the April 15, 2016, issue of the journal Science that scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper II pathway that guided interleukin-4 (IL4) – dependent macrophage polarization, which was critical for functional muscle recovery. Mice that had been genetically engineered to lack T-cells did not activate interleukin production or heal as well as normal mice.

"In previous research, we have seen different immune system responses to the same biomaterial implanted in different tissues or environments, and that got us interested in how biomaterials might stimulate the immune system to promote regeneration," said senior author Dr. Jennifer Elisseeff, professor of ophthalmology and biomedical engineering at Johns Hopkins University. "We still have a lot to learn, but this study is a step toward designing materials to elicit a beneficial immune response."

Related Links:
Johns Hopkins University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more