We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Tumors Grow When Normal Cells Are Induced to Become Cancerous

By LabMedica International staff writers
Posted on 13 Dec 2015
Print article
Image: Ribbon representation of a repeating unit in the extracellular E-cadherin ectodomain (Photo courtesy of Wikimedia Commons).
Image: Ribbon representation of a repeating unit in the extracellular E-cadherin ectodomain (Photo courtesy of Wikimedia Commons).
A recent study determined how the cancer cells within a tumor promote its growth by transforming neighboring normal epithelial cells into cancer cells.

In epithelial cancers, carcinoma cells coexist with normal cells. Although it was known that the tumor microenvironment played a pivotal role in cancer progression, it was not completely understood how the tumor influenced adjacent normal epithelial cells.

In a recent study, investigators at the University of Delaware (Newark, USA) employed a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) to demonstrate that carcinoma cells sequentially induced cancer-like changes, including preneoplastic lumen filling and epithelial–mesenchymal transition (EMT) in epithelial cysts.

The investigators found that at the molecular level, the protease MMP-9 (matrix metallopeptidase 9) secreted by carcinoma cells cleaved cellular E-cadherin from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein.

Cadherins are members of a family of calcium-dependent cell adhesion proteins that preferentially interact in a homophilic manner in cell-cell interactions. They are type I membrane proteins that contribute to the sorting of heterogeneous cell types. Typically, cadherins have five similar extracellular domains, the outermost three of which have Ca2+-binding sites, and an intracellular C-terminal domain that interacts with the actin cytoskeleton. Loss of E-cadherin function or expression has been implicated in cancer progression and metastasis. E-cadherin downregulation decreases the strength of cellular adhesion within a tissue, resulting in an increase in cellular motility. This in turn may allow cancer cells to cross the basement membrane and invade surrounding tissues.

In the current study, the investigators showed that sE-cad induced EGFR (epidermal growth factor receptor) activation, resulting in lumen filling in MDCK cysts, and that long-term sE-cad treatment induced EMT. Therefore, they were able to demonstrate that carcinoma cells could induce sE-cad shedding in adjacent epithelial cells, which led to EGFR activation and the eventual transdifferentiation of the normal epithelial cells.

Senior author Dr. Ayyappan Rajasekaran, adjunct professor of materials science and engineering at the University of Delaware, said, "This is the first time research has demonstrated that a cancer cell can sequentially induce early and late stages of cancer development in neighboring normal cells—a fundamental finding that can inform future studies. Like bacteria and viruses, cancer cells have the potential to infect normal cells and promote cancer progression. Future studies should give a new dimension to our understanding of cancer development and treatment."

Related Links:

University of Delaware


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more