We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

3-D Scanning and Printing Technology Enable Complex Nerve Regeneration in Rat Model

By LabMedica International staff writers
Posted on 05 Oct 2015
Print article
Image: A three-dimensional printed nerve regeneration pathway implanted in a rat (Photo courtesy of the University of Minnesota College of Science and Engineering).
Image: A three-dimensional printed nerve regeneration pathway implanted in a rat (Photo courtesy of the University of Minnesota College of Science and Engineering).
A novel three-dimensional printing approach has enabled the regeneration of a complex nerve in a rat model system.

Investigators at the University of Minnesota (Minneapolis, USA) and their colleagues at several other research institutes used sophisticated imaging technology to produce a three-dimensional map of the structure of a rat's sciatic nerve. A custom-built three-dimensional printer was then used to fabricate a silicone guide for regrowth of the nerve. The guide incorporated both physical and biochemical cues to promote regeneration of the nerve.

In vitro studies showed that three-dimensional printed physical and biochemical cues in the guide provided axonal guidance and chemotractant/chemokinetic functionality.

The guide was implanted into a rat by surgically grafting it to the cut ends of the sciatic nerve. Results published in the September 18, 2015, online edition of the journal Advanced Functional Materials revealed that in vivo studies examining the regeneration of bifurcated injuries across a 10 millimeter complex nerve gap in rats showed that the three-dimensional printed scaffolds achieved successful regeneration of complex nerve injuries, resulting in enhanced functional return of the regenerated nerve.

"This represents an important proof of concept of the three-dimensional printing of custom nerve guides for the regeneration of complex nerve injuries," said senior author Dr. Michael McAlpine, professor of mechanical engineering at the University of Minnesota. "Someday we hope that we could have a three-dimensional scanner and printer right at the hospital to create custom nerve guides right on site to restore nerve function. The exciting next step would be to implant these guides in humans rather than rats. In cases where a nerve is unavailable for scanning, there could someday be a "library" of scanned nerves from other people or cadavers that hospitals could use to create closely matched three-dimensional-printed guides for patients."

Related Links:

University of Minnesota


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more