We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

By LabMedica International staff writers
Posted on 27 Jul 2015
Print article
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).
Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic needle injection.

Previous attempts using microneedles made of silicon or metal were not successful primarily due to the risk of the needles breaking off in the skin, leaving tiny fragments behind. To avoid this problem, investigators at Osaka University (Japan) prepared microneedle patches from hyaluronic acid, a naturally occurring and water soluble biological material. The "MicroHyala" microneedle patch was loaded with the material to be injected and then applied like a plaster. The needles pierced the top layer of skin and then dissolved into the body, taking the vaccine with them.

In the current study the investigators examined the clinical safety and efficacy of the MicroHyala vaccination method using MH (flu-MH), which contains trivalent influenza hemagglutinins (15 micrograms each). Subjects were treated transcutaneously (TCI group) with a flu-MH microneedle patch, and were compared with subjects who received subcutaneous injections (SCI group) of a solution containing 15 micrograms of each influenza antigen.

Results published in the July 2015 issue of the journal Biomaterials revealed that no severe local or systemic adverse events were detected in either group. Immune responses against A/H1N1 and A/H3N2 strains were induced equally in the TCI and SCI groups. Moreover, the efficacy of the vaccine against the B strain in the TCI group was stronger than that in the SCI group.

"Our novel transcutaneous vaccination using a dissolving microneedle patch is the only application vaccination system that is readily adaptable for widespread practical use," said senior author Dr. Shinsaku Nakagawa, professor of medical pharmacy at Osaka University. "Because the new patch is so easy to use, we believe it will be particularly effective in supporting vaccination in developing countries."

"We were excited to see that our new microneedle patch is just as effective as the needle-delivered flu vaccines, and in some cases even more effective," said Dr. Nakagawa. "We have shown that the patch is safe and that it works well. Since it is also painless and very easy for non-trained people to use, we think it could bring about a major change in the way we administer vaccines globally."

Related Links:

Osaka University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Researchers have found a way to spot the debilitating disease Alzheimer\'s before it develops into dementia (Photo courtesy of 123RF)

Advanced Blood Test to Spot Alzheimer's Before Progression to Dementia

Alzheimer’s disease is well known for its slow development over many years, which typically leads to treatment interventions only after the disease has advanced to stages where it may be nearly impossible... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more