We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Achilles Heel in Dengue Virus Discovered

By LabMedica International staff writers
Posted on 26 Apr 2015
Print article
Image: Illustration of the 3D structure of antibody complexes for all four serotypes bound to the Dengue virus envelope protein (Image courtesy of Institut Pasteur).
Image: Illustration of the 3D structure of antibody complexes for all four serotypes bound to the Dengue virus envelope protein (Image courtesy of Institut Pasteur).
Image: Illustration of human patient antibodies binding to a Dengue virus particle (Image courtesy of Imperial College London).
Image: Illustration of human patient antibodies binding to a Dengue virus particle (Image courtesy of Imperial College London).
Researchers have found new hope for a vaccine against dengue fever after discovering a vulnerable site on the surface of the Dengue virus that is targeted by the only broadly neutralizing human antibodies identified to date.

The discovery, from research led by scientists at Imperial College London (London, UK) and Institut Pasteur (Paris, France), offers a new target for development of a vaccine to combat all 4 types (serotypes DEN-1, DEN-2, DEN-3, DEN-4) of Dengue virus currently in circulation. Though a patient produces antibodies specific to one serotype during an initial infection, these do not confer effective protection against subsequent infection by the other serotypes. These antibodies may even constitute a risk factor for developing a severe, often fatal form of dengue – dengue hemorrhagic fever. Any future vaccine against dengue must therefore provide effective, simultaneous protection against all four.

“Current vaccine trials have shown some promise but do not fully protect from infection. The finding of this new class of antibodies points the way for a new approach,” said Prof. Gavin Screaton of Imperial College. “Rather than binding to a single protein on the surface of the virus, these antibodies target a molecular bridge between two proteins. Although the 4 strains of Dengue virus have variations in their surface proteins, the molecular bridge is the same, enabling the antibodies to neutralize all the different types.”

The study identified the existence of a region in the Dengue virus envelope protein (VEP) that is exposed to antibodies to all 4 serotypes, suggesting that antibodies specific for this region may be effective in neutralizing the virus and so provide a promising target for an effective vaccine.

The team from Imperial College had already succeeded in identifying and isolating antibodies that simultaneously neutralize all 4 virus serotypes in a cohort of patients infected in Thailand. Such antibodies could themselves be used to protect against or treat infections; or vaccines could be devised. However, the mode of action of these antibodies remained unknown. In the new study, using the SOLEIL and ESRF synchrotron radiation facilities in Saint-Aubin (near Paris and Grenoble respectively), the scientists carried out a crystallographic analysis of the VEP in complex with these isolated antibodies in order to determine the 3D structure. Their analyses succeeded in identifying the antibody binding site on the VEP, and determined that the amino acid sequence at this site is identical in all 4 serotypes.

They also discovered that the VEP antibody binding site doubles as the binding site for the viral protein prM. Interaction between VEP and prM is crucial for the production of infectious viral particles during virus replication in infected cells. These observations provided insight into why this common binding site has been highly conserved despite the flaw it may appear to represent: a slight mutation on this site would enable the virus to evade the immune system but, at the same time, prevent the interaction with prM essential for replication.

This site may turn out to be the “Achilles heel” of the dengue virus. It opens new possibilities for developing a unique antigenic determinant to mimic this site that may trigger an immune response targeting all 4 serotypes simultaneously and so constitute a prime vaccine candidate against dengue.

The study, by Rouvinski A, et al, was published online January 12, 2015, in the journal Nature. The earlier study (on isolating the patient antibodies that recognize all 4 serotypes), by Dejnirattisai W, et al, was published online December 15, 2014, in the journal Nature Immunology.

Related Links:

Institut Pasteur
Imperial College London
Centre national de la recherche scientifique (CNRS)


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more