We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

By LabMedica International staff writers
Posted on 29 Oct 2014
Print article
A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells.

Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published this groundbreaking finding October 17, 2014, in the international journal Science. By means of some of the shortest laser pulses, the researchers employed strobe lighting to monitor the ultra-fast movement of the electrons within a nanometer-sized molecule of amino acid. The resulting oscillations—lasting for 4,300 attoseconds—amount to the fastest process ever observed in a biologic structure.

Dr. Greenwood said, “Explaining how electrons move on the nanoscale is crucial for the understanding of a range of processes in matter as it is this charge which initiates many biological, chemical, and electrical processes. For instance, the charge produced from the interaction of ionizing radiation with DNA and its subsequent ultra-fast movement can lead to damage of the DNA and cell death which is exploited in radiotherapy to treat cancer. This knowledge is therefore important for understanding the action of radiotherapy beams in cancer treatment. Being able to describe how light interacts with electrons on these timescales could also lead to improvements in how light is converted into electricity in solar cells or faster microprocessors, which use light rather than electrical signals for switching transistors.”

The research was performed by Queen’s School of Mathematics and Physics in collaboration with the Politecnico Milano (Italy), the Universidad Autónoma of Madrid (Spain), University of Trieste (Italy), and Institute of Photonics and Nanotechnologies IFN-CNR (Padua, Italy).

Dr. Greenwood concluded, “This research will hopefully open up the emerging field of attosecond science which seeks to understand how ultrafast electrons play a key role in chemistry, biology and nanotechnology. This is very early research but this new field of ultrafast light-induced electronics is likely to have an impact in biology, chemistry and materials in the next five to 10 years. Practical applications down the line may include improvements in cancer radiotherapy, highly efficient solar cells, and much faster computer processors.”

Related Links:

Queen’s University Belfast
Politecnico Milano 
Universidad Autónoma of Madrid 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more