We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Protein Protects Lung Tissues from Influenza Virus

By LabMedica International staff writers
Posted on 28 Jan 2014
Print article
Image: Lung tissue from cIAP2-deficient mice showing effects on epithelial cells of influenza infection (Photo courtesy of McGill University).
Image: Lung tissue from cIAP2-deficient mice showing effects on epithelial cells of influenza infection (Photo courtesy of McGill University).
Researchers studying how the body responds to influenza infection have found that the protein called "cellular inhibitor of apoptosis protein 2" (cIAP2) protects the lungs against pulmonary tissue necrosis during virus infection to promote host survival.

cIAP2 is a multifunctional protein that regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, mitogenic kinase signaling, and in cancer cells, cell proliferation, cell invasion, and metastasis. It acts as an E3 ubiquitin- protein ligase regulating NF-kappa-B signaling, and regulates both canonical and non-canonical NF-kappa-B signaling. The target proteins for its E3 ubiquitin-protein ligase activity include RIPK1, RIPK2, RIPK3, RIPK4, CASP3, CASP7, CASP8, TRAF1, and BCL10.

In order to study the role of cIAP2 in H1N1type A influenza, investigators at McGill University (Montreal, Canada) genetically engineered a line of mice to lack the gene for this protein.

They reported in the January 15, 2014, issue of the journal Cell Host & Microbe that mice deficient in cIAP2 exhibited increased susceptibility and mortality to influenza A virus infection. The lethality was not due to impaired antiviral immune functions, but rather because of death-receptor-induced programmed necrosis of airway epithelial cells that led to severe bronchiole epithelial degeneration, despite control of viral replication. Drugs that blocked RIPK1 or genetic deletion of RIPK3, both kinases involved in programmed necrosis, rescued cIAP2-deficient mice from influenza-induced lethality. Genetic deletion of the death receptor agonists Fas ligand or TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) also reversed the susceptibility of cIAP2-deficient mice.

These results indicated that lung tissues were protected from the H1N1 influenza virus by cIAP2 inhibition of RIPK3-mediated programmed necrosis rather than through control of the virus by the immune system.

“It is a discovery that offers exciting new avenues for controlling influenza, since until now attempts to target the virus itself have proven challenging, especially in the face of emerging new strains of the virus,” said senior author Dr. Maya Saleh, associate professor of medicine and biochemistry at McGill University. “The results from our study now suggest that one effective way of countering influenza infections may instead be offered by enhancing the body’s resistance to the virus.”

Related Links:

McGill University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more