We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mutation Causing Lesch-Nyhan Syndrome Linked to Other Neurological Disorders

By LabMedica International staff writers
Posted on 21 Oct 2013
Print article
Scientists have shown that gene expression errors impair the ability of stem cells to produce normal neurons, resulting instead in neurological disease. They indicate that at least some distinctly different neurodevelopmental and neurodegenerative disorders share basic, causative defects.

A gene mutation that causes a rare but destructive neurological disorder known as Lesch-Nyhan syndrome could help explain the developmental and neuronal defects found in other, diverse neurological disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Lesch-Nyhan syndrome is caused by defects in the hypoxanthine guanine phosphoribosyltransferacgene (HPRT1), a gene that helps generate purine nucleotides, needed for DNA and RNA.

The findings, published in the October 9, 2013, issue of the journal PLOS ONE provide the first experimental picture of how gene expression errors impair the ability of stem cells to produce normal neurons, resulting instead in neurological disease. They indicate that at least some distinctly different neurodevelopmental and neurodegenerative disorders share basic, causative defects.

Mutations in the HPRT gene result in deficiencies in the HPRT enzyme, leading to defective expression of the neurotransmitter dopamine and subsequent abnormal neuron function. HPRT mutation is the specific cause of Lesch-Nyhan, an inherited neurodevelopmental disorder characterized by uncontrollable repetitive body movements, cognitive defects and compulsive self-mutilating behaviors.

They discovered that the cells do not develop normally. Instead, they differentiate from full-fledged neurons into cells that resemble and partially function as neurons, but also perform functions more typical of glial cells, a kind of supporting cell in the central nervous system. In addition, they noted that HPRT deficiency causes abnormal regulation of many cellular functions controlling important operational and reproduction mechanisms, DNA replication and repair and many metabolic processes.

The scientific team, headed by Theodore Friedmann, MD, professor of pediatrics at the University of California, San Diego School of Medicine (USA), says a gene mutation that causes a rare but destructive neurological disorder known as Lesch-Nyhan syndrome appears to explain the developmental and neuronal defects found in other, diverse neurological disorders like Alzheimer’s, Parkinson’s and Huntington’s diseases.

The scientists say that understanding defects in Lesch-Nyhan could help identify errant processes in other, more common neurological disorders, perhaps pointing the way to new kinds of therapies. Lesch-Nyhan syndrome is caused by defects in the hypoxanthine guanine phosphoribosyltransferacgene (HPRT1), a gene that is well-known for its essential tasks among them helping generate purine nucleotides–the building blocks of DNA and RNA.

“We believe that the neural aberrations of HPRT deficiency are the consequence of these combined, multisystem metabolic errors,” said Prof. Friedmann. “And since some of these aberrations are also found in other neurological disorders, we think they almost certainly play some role in causing the neurological abnormalities in diseases like Alzheimer’s, Parkinson’s, Huntington’s and possibly others. That makes them potential therapeutic targets for conditions that currently have limited or no treatments, let alone cures.”

Related Links:

University of California, San Diego School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more